CERTIFICATION STATEMENT

Baptist Health, its schools and their administrators reserve the right to restrict, or limit enrollment in any course and make changes in the provisions (organization, fees, program offerings, curricula, courses, requirements and so forth) in this handbook when such action is deemed to be in the best interest of the student or a particular school. The provisions herein do not represent, in any way, a contract between the student, prospective or otherwise, and the administration of a school. This handbook replaces all handbooks previously published.

FORWARD

This handbook is provided to the student to serve as an overall guide to the Baptist Health College Little Rock-School of Nuclear Medicine Technology. Policies contained herein are current at the time of printing; however, policies, procedures and information contained within require continual evaluation, review, and approval. Therefore, the faculty and administration of the school reserve the right to change the policies, procedures and general information at any time without prior notice, according to policy; all new and revised policies are posted on appropriate and designated student bulletin boards, for a defined period of time or students receive electronic notification of new or revised policies. Additionally, changes will be made on the website version. Students are expected to remain informed by checking the schools website regularly at www.BHCLR.edu.

STATEMENT REGARDING STUDENT HANDBOOK

Students enrolled in the Baptist Health College Little Rock are responsible for information contained in the current Student Handbook and current Catalog. Students enrolled in a program of study are expected to comply with all policies of: a) Baptist Health College Little Rock, b) all institutions with which the schools are affiliated, and c) the respective program of enrollment. Additional details of policies that specifically pertain to a student’s specific program of enrollment are applicable and are located herein in the programs respective School Specific section.

First Printed in 1984

31th Edition
Revised 5/20/2015
Baptist Health College Little Rock
11900 Colonel Glenn Road
Little Rock, AR 72210
501-202-6200
BAPTIST HEALTH COLLEGE LITTLE ROCK
SCHOOL OF NUCLEAR MEDICINE TECHNOLOGY
SCHOOL SPECIFIC STUDENT HANDBOOK SECTION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Student Welcome</td>
<td>1</td>
</tr>
<tr>
<td>Introductory</td>
<td>2</td>
</tr>
<tr>
<td>History</td>
<td>2</td>
</tr>
<tr>
<td>Program Overview</td>
<td>2</td>
</tr>
<tr>
<td>Mission Statement</td>
<td>2</td>
</tr>
<tr>
<td>Values</td>
<td>2</td>
</tr>
<tr>
<td>Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>Belief</td>
<td>3</td>
</tr>
<tr>
<td>Program Goals</td>
<td>3</td>
</tr>
<tr>
<td>Standards</td>
<td>4</td>
</tr>
<tr>
<td>Code of Ethical Conduct</td>
<td>4</td>
</tr>
<tr>
<td>Objectives of the Competency Based Curriculum</td>
<td>4</td>
</tr>
<tr>
<td>Accreditation, Approval, Licensure and Membership</td>
<td>13</td>
</tr>
<tr>
<td>Affiliations</td>
<td>14</td>
</tr>
<tr>
<td>Academic</td>
<td>14</td>
</tr>
<tr>
<td>Clinical</td>
<td>14</td>
</tr>
<tr>
<td>Administration</td>
<td>14</td>
</tr>
<tr>
<td>Clinical Instructors</td>
<td>15</td>
</tr>
<tr>
<td>BHCLR Professional Staff</td>
<td>16</td>
</tr>
<tr>
<td>BHCLR Support Staff</td>
<td>16</td>
</tr>
<tr>
<td>Academic</td>
<td>16</td>
</tr>
<tr>
<td>Academic Progress</td>
<td>16</td>
</tr>
<tr>
<td>Satisfactory Progress</td>
<td>18</td>
</tr>
<tr>
<td>Application and Entry Process</td>
<td>18</td>
</tr>
<tr>
<td>Application Requirements</td>
<td>18</td>
</tr>
<tr>
<td>Entry Requirements</td>
<td>20</td>
</tr>
<tr>
<td>Entry and Graduation</td>
<td>20</td>
</tr>
<tr>
<td>Prerequisite Requirements</td>
<td>20</td>
</tr>
<tr>
<td>Application Final Date</td>
<td>20</td>
</tr>
<tr>
<td>Selection Committee</td>
<td>20</td>
</tr>
<tr>
<td>Selection Process</td>
<td>21</td>
</tr>
<tr>
<td>Cost of the Program</td>
<td>21</td>
</tr>
<tr>
<td>Finance</td>
<td>21</td>
</tr>
<tr>
<td>Tuition Refund</td>
<td>21</td>
</tr>
<tr>
<td>Refund Methodology for Allied Health Students</td>
<td>22</td>
</tr>
<tr>
<td>Length of Program</td>
<td>22</td>
</tr>
<tr>
<td>Policies</td>
<td>22</td>
</tr>
<tr>
<td>Attendance Policies</td>
<td>23</td>
</tr>
<tr>
<td>Absences</td>
<td>23</td>
</tr>
<tr>
<td>Disciplinary Actions Related to Unexcused Absences</td>
<td>23</td>
</tr>
<tr>
<td>Tardiness</td>
<td>24</td>
</tr>
<tr>
<td>Disciplinary Actions for Tardiness</td>
<td>24</td>
</tr>
<tr>
<td>Making Up Time</td>
<td>24</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Essential Requirements</td>
<td>24</td>
</tr>
<tr>
<td>Professional Curriculum</td>
<td>25</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>26</td>
</tr>
<tr>
<td>School Calendar</td>
<td>29</td>
</tr>
<tr>
<td>Class and Clinical Rotations</td>
<td>29</td>
</tr>
<tr>
<td>Makeup Work</td>
<td>30</td>
</tr>
<tr>
<td>Remediation</td>
<td>31</td>
</tr>
<tr>
<td>Academic Advising</td>
<td>31</td>
</tr>
<tr>
<td>Special Requirements for UCA Students</td>
<td>31</td>
</tr>
<tr>
<td>Graduation Requirements</td>
<td>31</td>
</tr>
<tr>
<td>Certification and Credentials</td>
<td>32</td>
</tr>
<tr>
<td>Student Appeal/Disciplinary/Dress Code</td>
<td>32</td>
</tr>
<tr>
<td>Behavioral Expectations in Clinical Rotations</td>
<td>32</td>
</tr>
<tr>
<td>Clinical Rotations</td>
<td>33</td>
</tr>
<tr>
<td>Level of Supervision during Clinical Rotations</td>
<td>34</td>
</tr>
<tr>
<td>Student Employment/Work Related Policies</td>
<td>34</td>
</tr>
<tr>
<td>Special Requirements for Affiliate University Students</td>
<td>35</td>
</tr>
<tr>
<td>Standards of Conduct</td>
<td>36</td>
</tr>
<tr>
<td>Clinical Instructor Responsibilities</td>
<td>37</td>
</tr>
<tr>
<td>Clinical Evaluations</td>
<td>38</td>
</tr>
<tr>
<td>Dress Code</td>
<td>41</td>
</tr>
<tr>
<td>Responsibilities of the School</td>
<td>43</td>
</tr>
<tr>
<td>What the School Expects from Students</td>
<td>44</td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>44</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>45</td>
</tr>
<tr>
<td>Program Effectiveness</td>
<td>47</td>
</tr>
<tr>
<td>Counseling/Resources</td>
<td>47</td>
</tr>
<tr>
<td>Student Health</td>
<td>47</td>
</tr>
<tr>
<td>Student Injury</td>
<td>47</td>
</tr>
<tr>
<td>Inclement Weather</td>
<td>48</td>
</tr>
<tr>
<td>Required Textbooks</td>
<td>48</td>
</tr>
<tr>
<td>Additional Information</td>
<td>49</td>
</tr>
<tr>
<td>CLEP</td>
<td>49</td>
</tr>
<tr>
<td>Transfer Course/Credit</td>
<td>49</td>
</tr>
<tr>
<td>Auditing Course</td>
<td>49</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>50</td>
</tr>
<tr>
<td>Appendix I: Allied Health Cost Plan 2015-2016</td>
<td>51</td>
</tr>
<tr>
<td>Appendix II: Student Clinical Evaluation 2015-2016</td>
<td>52</td>
</tr>
<tr>
<td>Appendix III: Clinical Competency Requirements 2015-2016</td>
<td>58</td>
</tr>
</tbody>
</table>
SCHOOL OF NUCLEAR MEDICINE TECHNOLOGY

NEW STUDENT WELCOME

WELCOME to the Baptist Health College Little Rock (BHCLR) School of Nuclear Medicine Technology. We believe that you have made an important decision in choosing this type of allied health profession as your career choice. During the next twelve (12) months, you will learn the basic principles and practices of Nuclear Medicine Technology and develop competency in many of the clinical procedures that you will experience. This is an exciting time during which you will work alongside other allied health and nursing professionals and physicians and will develop a sense of pride and accomplishment in your new career.

The purpose of the Student Handbook is to acquaint you with the rules and regulations of the BHCLR School of Nuclear Medicine Technology, familiarize you with the objectives of both the theory and clinical portions of the program, and inform you of the evaluative processes that will be used to determine your progress in both phases of the program.

During your clinical training, you will experience the diversity of six (6) different clinical sites offering specialty training in the areas of general diagnostic nuclear medicine imaging, pediatric imaging, PET/CT, CT, nuclear cardiology, nuclear pharmacy and radionuclide therapy.

Read this Student Handbook thoroughly and carefully, as you are accountable for the information herein contained. If at any point in this program you need clarification of the contents of the handbook, please contact me at 501-202-7447.

Again, welcome to the BHCLR School of Nuclear Medicine Technology. We look forward to teaching and learning with you for the next twelve (12) months.

Yours truly,

Sharon Ward

Sharon Ward MA, CNMT, RT(N), ASCP(N)
Program Director
Baptist Health College Little Rock School of Nuclear Medicine Technology
INTRODUCTION

HISTORY

The BHCLR- School of Nuclear Medicine Technology was founded in 1979 as a clinical affiliate of St. Vincent Infirmary. The hospital-based program was transferred to the sponsorship of Baptist Health in 1986. The school has maintained full accreditation since its initial accreditation in 1987 by the Joint Review Committee on Educational Programs in Nuclear Medicine Technology (JRCNMT) and is licensed by the Arkansas State Board of Private Career Education. The school is affiliated with the University of Central Arkansas and Southern Arkansas University for a 3 + 1 baccalaureate program (UCA) and a 4+1 baccalaureate program (SAU), with the universities granting the graduate a baccalaureate degree from that university at the successful conclusion of the program.

PROGRAM OVERVIEW

The Assistant Vice President of Education/Chancellor for BHCLR has overall administrative authority and responsibility for all schools and employee development within the department. The Program Director of the BHCLR-School of Nuclear Medicine Technology has overall operational responsibility with specified administrative authority. The Program Director is responsible for planning, implementing and evaluating the total Program of Studies in accordance with the Arkansas State Board of Private Career Education and the Joint Review Committee for Educational Programs in Nuclear Medicine Technology.

The supervisors and coordinators of the clinical Nuclear Medicine departments at the various clinical sites assist both the AVP and Program Director with their responsibilities and serve as their designees in the clinical development of students during their rotation assignments. Respective clinical supervisors have direct input to policy development and operations as members of the BHCLR-School of Nuclear Medicine Technology Advisory Committee.

The BHCLR School of Nuclear Medicine Technology is comprised of faculty, students, administrative support staff and a Program of Studies that reflects a curriculum model for a student to achieve the educational goal of a Nuclear Medicine Technologist.

The School is committed to providing entry level job competent graduates to the healthcare community by promoting high standards of education and for the professional development of students

MISSION STATEMENT

The BHCLR- School of Nuclear Medicine Technology exists to fulfill the demand for highly skilled and competent Nuclear Medicine Technologists within Baptist Health as well as in the surrounding community. The School is committed to providing students with the highest standards of education and training so that they possess the skills, knowledge and professional values in order to successfully enter the profession as an entry level, certified Nuclear Medicine Technologist. The School shares the philosophy and mission of Baptist Health and through continuous quality improvement is committed to employers, students, and patient satisfaction.

VALUES

The BHCLR-School of Nuclear Medicine Technology exemplifies the philosophy and the Values of Baptist Health by emphasizing the values of Respect, Service, Honesty, Stewardship, and Performance, and a commitment to
providing quality patient care. The School also supports the Code of Ethical Conduct of Baptist Health. These Christian values of Service, Honesty, Respect, Stewardship and Performance provide the framework for all operations within the school.

PHILOSOPHY

The School upholds the Philosophy and Values of Baptist Health by encouraging Service, Honesty, Respect, Stewardship and Performance with a commitment to providing quality patient care. Christian ideas, attitudes and spiritual perspectives as they apply to the caring of the patient are emphasized, as well as personal and professional conduct.

It is the School’s belief that a competent individual in the health care field of today, must not only prove to be proficient in the field of Nuclear Medicine Technology, but must also possess an appreciation of his/her role within the clinical setting and an understanding of the organizational culture affecting the work environment.

In order to assure that the student acquires this competency, ethical principles, Christian values and management skills are interrelated with the practice of Nuclear Medicine Technology.

The School is committed to providing competent, entry-level job graduates to Baptist Health and the healthcare community through its high standards of professional education.

BELIEF

The BHCLR-School of Nuclear Medicine Technology shares the values of Baptist Health. Baptist Health is more than a business; it is a healing ministry. Our healing ministry is based on the revelation of God through creation, the Bible and Jesus Christ. At Baptist Health, care of the whole person, body, mind and spirit, is an expression of Christian faith. We are instruments of God’s restorative power and are responsible for giving compassionate care.

PROGRAM GOALS

The goals of the BHCLR- School of Nuclear Medicine Technology serve as a framework for the program of study and instruction for the development of a graduate who demonstrates:

1. Competency in utilizing the clinical skills of an entry level Nuclear Medicine Technologist.
2. Ability to develop and utilize critical-thinking, problem solving and decision-making skills effectively in both the clinical and classroom setting.
3. The ability to provide proper comfort and care to the patient prior to, during and after a procedure.
4. Application of the art and skill of diagnostic evaluation and therapeutics through the safe and effective use of radionuclides.
5. Professionalism in the performance of responsibilities such as patient interviews and instruction, preparation, quality control testing and administration of prescribed radioactive compounds for therapy, quality control and radiation safety.
6. Proper execution of patient imaging and non-imaging procedures including the selection of appropriate imaging parameters, administering radiopharmaceuticals and/or pharmaceuticals, data collection, processing and analysis in accordance with established protocols while demonstrating an empathetic and instructional approach to patient care.
7. Application of knowledge of radiation physics and safety regulations to limit radiation exposure of the general public, patient, fellow workers, and self to as low as reasonably achievable (ALARA).

8. The ability to perform quality assurance procedures as required by various regulatory agencies and to evaluate the performance of both imaging and non-imaging equipment based on the outcomes of these procedures.

9. Professional growth and development through participation in medical and technical education to enhance the quality of patient care.

10. Commitment to making a significant contribution to the healthcare team by an understanding of departmental organization and function in relation to the healthcare delivery system as a whole.

11. Development of a holistic caregiver’s perspective and an appreciation and respect for cultural diversity.

12. The knowledge and ability to successfully pass the NMTCB and ARRT (N) board exams.

STANDARDS

CODE OF ETHICAL CONDUCT

The BHCLR- School of Nuclear Medicine Technology has high expectations of professional behavior for its students. As a member of the Baptist Health family, it is the student’s personal duty and responsibility to comply with all regulatory requirements, standards, policies and procedures. “Ethical Conduct” means doing the right thing. It is very important to remember that members of the Baptist Health family are expected to follow the rules because our Values tell us it is the right thing to do, not simply because it is required. Students in health professions are held to higher standards of integrity due to their unique relationships with society. Nuclear Medicine Technology students are guided by the ethical principles and standards adopted by the Society of Nuclear Medicine and Molecular Imaging—Technologist Section and the American Registry of Radiologic Technologists. Conforming to the policies and procedures will assist the student in obtaining the necessary affective behaviors needed to perform the professional duties and responsibilities of a Nuclear Medicine Technologist.

Violation of these standards include but are not limited to lying, cheating, plagiarism, fraud or other act(s) of ethical misconduct. The BHCLR School of Nuclear Medicine Technology has developed consequences for the violation of established professional standards which can result in demerits, suspension, or permanent dismissal. Ethical misconduct can result in sanctions by the American Registry of Radiologic Technologists.

BHCLR-School of Nuclear Medicine Technology advisory board committee endorses and supports the enforcement of the violation of the programs Code of Ethical Conduct in order to instill professional behaviors, honesty, and integrity of its students.

OBJECTIVES OF THE COMPETENCY BASED CURRICULUM

In order for a School of Nuclear Medicine Technology to be accredited by the Joint Review Committee on
Educational Programs in Nuclear Medicine Technology (JRCNMT), a minimum level of competency in specific areas of knowledge and understanding must be attained by the time the student graduates. These areas are presented in their broadest terms; more information is provided in specific objectives in course syllabi and clinical performance objectives. After completing the program, each student should have attained a level of knowledge and skill to be capable of performing the various tasks required of an entry-level Nuclear Medicine Technologist as defined in the Joint Review Committee on Educational Programs in Nuclear Medicine Technology (JRCNMT) guidelines:

1. **Patient Care**

 1.1 Acquiring pertinent knowledge of the patient’s medical history and any contraindications to understand and correlate the patient’s illness to the pending diagnostic or therapeutic procedure(s)

 1.2 Providing for proper comfort and care of the patient before, during and after a procedure including, but not limited to the monitoring of intravenous lines, oxygen supplies, drains and the status of patients who are under sedation

 1.3 Recognizing surgical and disease factors that may create artifacts of variants on all nuclear medicine images including PET images, and thus require modifications in the data acquisition or data processing protocol

 1.4 Establishing and maintaining good communication with each patient (e.g. making introductions, explaining the procedures, answering questions)

 1.5 Providing functionally safe and sanitary conditions for the patient in compliance with standard precaution policies

 1.6 Recognizing and responding to an emergency condition by initiating a call for assistance, monitoring and recording physiologic data, administering cardiopulmonary resuscitation when necessary and maintaining intravenous fluids, oxygen, and other life-support assistance until an emergency code team arrives

 1.7 A nuclear medicine technologist prepares the patient for an examination by:

 1.7.1 Reviewing written orders for the procedure, evaluating procedure appropriateness, verifying patient identification and determining pregnancy status as well as breast feeding status, if applicable

 1.7.2 Analyzing patient information to determine contraindications, interfering medications and potential adverse reactions prior to administration of radiopharmaceuticals, pharmaceuticals and contrast media

 1.7.3 Evaluating pertinent blood work and lab test results prior to imaging

 1.7.4 Ensuring that informed consent has been obtained when necessary

 1.7.5 Explaining the procedure to the patient, family, parents and/or legal guardian including, but not limited to: the procedure, patient involvement, length of study, and basic radiation safety

 1.7.6 Ensuring that any pre-procedural preparation has been completed including, but not limited to, fasting, hydration, taking of thyroid blocking compounds, voiding, bowel cleansing, and suspension of interfering medications
1.7.7 Waiting an appropriate length of time after the administration of a radiopharmaceutical, pharmaceutical or contrast agent to begin the procedure

1.7.8 Recognizing patient factors and the presence of objects that may create artifacts or normal variants on nuclear medicine images or measurements, and thus require modifications in the data acquisition or data processing protocol

1.8 A nuclear medicine technologist performs administrative procedures by:
1.8.1 Maintaining an appropriate inventory of medical/surgical supplies, radiopharmaceuticals, storage media, and other items to ensure that a patient procedure can be performed whenever necessary

1.8.2 Scheduling patient procedures

1.8.3 Determining the appropriate sequence for executing multiple procedures

1.8.4 Maintaining appropriate records of administered radioactivity, quality control procedures, patient reports, and other required records

1.8.5 Recording and reporting incidents as required by regulatory agencies

1.8.6 Revising and developing policies and procedures in accordance with applicable regulations and administrative requirements

1.8.7 Participating in quality control and quality assurance activities in the department

2. **Professionalism**

2.1 A nuclear medicine technologist recognizes the value and responsibilities inherent in being a professional healthcare provider.

2.2 A nuclear medicine technologist applies critical thinking and problem solving strategies to ensure best practices.

2.3 A nuclear medicine technologist practices in accordance with ethical standards, legal statutes and published standards of practice for the profession

2.4 A nuclear medicine technologist assesses the quality of published research studies and applies sound principles from them to the clinical setting to improve evidence-based practice

3. **Radiation Safety**

2.1 A nuclear medicine technologist, under supervision of an authorized user or radiation safety officer, maintains compliance with local, state and federal regulations in radiation safety practices by:

2.1.1 Using personnel monitoring devices (e.g. dosimeters, film badges, TLD’s etc.) and reviewing on a quarterly basis personnel exposure records in regard to maximum permissible dose limits, taking appropriate measures to follow the ALARA principle, and recognizing regulatory limits for radiation exposure
2.1.2 Notifying appropriate authorities when changes occur in the radiation safety program

2.1.3 Demonstrating knowledge of the content of a radioactive materials license and the processes for submitting license amendments

2.1.4 Maintaining required radiation safety records

2.1.5 Posting appropriate signs in designated areas

2.1.6 Following federal, state and institutional regulations regarding receipt and disposal of all radionuclides.

2.1.7 Carrying out programs to follow regulations regarding diagnostic and therapeutic dosages administrations and therapeutic follow-up procedures

2.1.8 Recommending purchase of protective equipment to meet regulations

2.1.9 Packaging radioactive material according to regulations and keeping accurate records of transfer

2.2 Follows appropriate protection procedures thereby limiting the radiation exposure of the patient, public, fellow workers, and self as to as low a level as reasonably achievable (ALARA) by:

2.2.1 Selecting and using proper shielding to reduce radiation exposure

2.2.2 Using proper methods for storage and disposal of radioactive materials

2.2.3 Identifying and using proper procedures for those radionuclides that pose special hazards (e.g. \(^{85}\text{Sr},\ ^{131}\text{I},\ \beta^+\) emitters)

2.2.4 Performing a bioassay per state and/or federal regulations

2.3 Performs radiation surveys by:

2.3.1 Ensuring that instruments are calibrated as regular intervals, after a repair, and as required by regulations

2.3.2 Setting frequency and locations for surveys and following schedules

2.3.3 Using appropriate survey meters for each type and level of activity

2.3.4 Following regulations regarding personnel surveys and reporting to the designated physician or radiation safety officer

2.3.5 Performing constancy checks on survey meters

2.3.6 Performing wipe tests where applicable

2.3.7 Performing leak tests on sealed sources, when so authorized

2.3.8 Maintaining required radiation survey records
2.4 Performing decontamination procedures by:

2.4.1 Wearing appropriate clothing and foot covering as necessary
2.4.2 Blocking access to a contaminated area and confining a spill
2.4.3 Removing contamination or reducing the activity to acceptable levels
2.4.4 Monitoring the area and personnel involved and repeating decontamination procedures until activity levels are acceptable
2.4.5 Closing off all areas of fixed contamination that are above acceptable levels
2.4.6 Identifying, storing, or disposing of contaminated material in accordance with regulations
2.4.7 Maintaining adequate records concerning cleanup
2.4.8 Notifying appropriate authority in the event of possible overexposure or other violations of regulations
2.4.9 Performing appropriate follow-up monitoring after any necessary decontamination records according to license conditions

2.5 Disposes of radioactive waste and maintains appropriate records according to license conditions

2.6 Understands the importance of participating in a hospital’s in-service education program to instruct other personnel regarding radiation and principles of radiation protection

3. Instrumentation Utilization and Quality Control

3.1 A nuclear medicine technologist evaluates the performance of various imaging systems by conducting the tests identified for each of the following:

3.1.1 Planar and SPECT imaging systems
 a. Energy peaking
 b. Intrinsic/extrinsic uniformity
 c. Resolution and linearity
 d. High count uniformity correction

3.1.2 SPECT imaging systems
 a. Center of rotation and/or multi-head detector registration
 b. Pixel calibration

3.1.3 Dedicated PET or PET component of PET/CT imaging systems
 a. Blank scan
b. Normalization

c. Absolute activity calibration

3.1.4 CT component of PET/CT imaging systems

a. Calibration

b. Field uniformity

c. Water phantom

d. Tube warm-up

e. Air calibration

f. Water phantom checks of slice thickness, accuracy and positioning

3.1.5 Complete fusion imaging system

a. Registration

b. Attenuation correction accuracy

3.2 A nuclear medicine technologist recognizes artifacts on quality control and patient images and implements appropriate corrective actions to produce acceptable images

3.3 A nuclear medicine technologist evaluates the performance of dose calibrators by performing and assessing the results of the following tests:

3.3.1 Test measurement of battery voltage

3.3.2 Zero adjustment

3.3.3 Background adjustment

3.3.4 Constancy

3.3.5 Linearity

3.3.6 Accuracy with NIST traceable standards

3.3.7 Geometry

3.4 A nuclear medicine technologist evaluates the performance of survey meters by performing and assessing the results of the following tests:

3.4.1 Battery check

3.4.2 Constancy
3.5 A nuclear medicine technologist evaluates the performance of NaI(Tl) counting and/or uptake systems by performing and assessing the results of the following tests:

3.5.1 Calibration checking using I-123 or a long-lived standard

3.5.2 Count of background

3.5.3 High voltage / gain checks

3.5.4 Energy resolution

3.5.5 Chi-square test

3.5.6 Sensitivity

3.5.7 Energy linearity

3.6 A nuclear medicine technologist documents performance and results of all quality control testing according to specified quality control program procedures.

3.7 A nuclear medicine technologist views, processes and archives acquired data on picture archival communicating systems (PACS).

3.8 The nuclear medicine technologist utilizes radiology and hospital information systems, managing patient information in these systems according to facility policies, state and federal statues and accreditation standards.

4. **Radiopharmaceuticals and Pharmaceuticals**

4.1 A nuclear medicine technologist initiates purchases of radiopharmaceutical products and adjunct supplies by:

4.1.1 Anticipating and procuring a sufficient supply of radioactive drugs for an appropriate time period in accordance with anticipated need and license possession limits

4.1.2 Storing drugs and supplies in a manner consistent with labeled product safeguards and with radiation safety considerations

4.1.3 Performing and documenting radiation wipe tests and surveys upon receipt of radioactive materials

4.1.4 Following Department of Transportation (DOT) and radiation safety guidelines in the transport, receipt and shipment of radioactivity

4.2 A nuclear medicine technologist prepares and verifies quality and quantity of radiopharmaceuticals under the direction of an authorized user by:

4.2.1 Employing aseptic technique for manipulation of injectable products

4.2.2 Eluting radionuclide generators according to manufacturer's specification
4.2.3 Verifying radionuclide purity of generator eluates

4.2.4 Selecting and preparing radiopharmaceuticals in accordance with manufacturer's specification

4.2.5 Calculating and measuring activity of the radionuclide with a dose calibrator

4.2.6 Confirming the quality of a radiopharmaceutical in accordance with accepted techniques and official guidelines

4.2.7 Preparing labeled blood cells, if applicable, in accordance with established protocols

4.2.8 Recording use and/or disposition of all radioactive materials

4.3 A nuclear medicine technologist is responsible for the identification and labeling of all radiopharmaceutical preparations by:

4.3.1 Labeling the container with the radiopharmaceutical, hour, date, expiration time, and radiation symbol

4.3.2 Recording radiopharmaceutical and medication information on a patient's administration form and preparation records

4.3.3 Labeling and segregating radioactive waste and recording this information

4.4 A nuclear medicine technologist prepares individual dosages under the direction of an authorized user by:

4.4.1 Applying radioactive decay calculations to determine required volume or unit form necessary to deliver the prescribed radioactive dosage

4.4.2 Applying weight and age-based calculations as appropriate to determine the prescribed dosage of pharmaceuticals and contrast media

4.4.3 Selecting and preparing prescribed dosages and entering this information on a patient's administration form and other records

4.4.4 Labeling the dosage for administration

4.4.5 Checking radiopharmaceutical dosage activity prior to administration in a dose calibrator and comparing this measurement against the identification label of the dose's immediate container

5. Diagnostic Procedures

5.1 A nuclear medicine technologist performs imaging procedures by:

5.1.1 Selecting imaging parameters

a. Selecting and preparing the instrument for the procedure

b. Selecting appropriate parameters for image data acquisition
c. Recognizing artifacts on static, dynamic, gated, SPECT and PET images that are due to instrumentation malfunction and initiating appropriate action

5.1.2 Administering radiopharmaceuticals and/or pharmaceuticals using standard precaution techniques as authorized by the institution

a. Verifying radiopharmaceutical and dose activity prior to dose administration

b. Verifying patient identity prior to the administration of medication or radiopharmaceuticals

c. Determining route of administration according to established protocol (e.g., subcutaneous, intramuscular, intravenous, inhalant, oral and intravesical)

d. Establishing and/or verifying venipuncture access using aseptic techniques

e. Using and maintaining established venous access routes

f. Establishing patterned breathing when introducing radiopharmaceuticals by inhalation

g. Administering oral radiopharmaceuticals

h. Documenting medication and/or radiopharmaceutical administrations on a patient's permanent record, as appropriate

i. Preparing, determining dosage, and administering non-radioactive pharmaceuticals under medical direction, where permitted

5.1.3 Positioning the patient and obtaining images

a. Recording image data according to established protocols and acquiring additional views when needed to optimize information content

b. Placing the patient in correct position using supportive materials and immobilizers as necessary

C. Exercising independent judgment in positioning a patient or detector unit to best demonstrate pathology

d. Indicating appropriate anatomic landmarks for each view of the procedure, and

e. Reviewing images to assure that correct information is supplied

5.1.4 Assisting the physician or practitioner in cardiac stress testing when performed in conjunction with nuclear medicine procedures

a. Preparing patient's skin and placing ECG leads appropriately
b. Recognizing and being responsive to any changes that may occur on either a resting or stress ECG

c. Recognizing the parameters that should terminate a cardiac stress study

5.1.5 Performing data collection, processing and analysis following established protocols

5.2 A nuclear medicine technologist performs non-imaging in-vivo studies (e.g., thyroid uptake) by:

5.1.1 Operating and performing necessary quality control checks on laboratory equipment

5.1.2 Preparing and counting standards when applicable

5.1.3 Performing calculations and recording results according to protocols

5.1.4 Managing bio-hazardous, chemical, and radioactive waste in accordance with applicable regulations and specific facility policies

7. Radionuclide Therapy

7.1 The nuclear medicine technologist assists an authorized user in the preparation and application of therapeutic radionuclides by:

7.1.1 Inspecting all paperwork including informed consent and written directive

7.1.2 Reviewing pertinent lab reports such as pregnancy test results

7.1.3 Assuring the correct radiopharmaceutical and dosage are prepared through technologist and authorized user verification of the dosage

7.1.4 Assuring the patient is correctly identified by the technologist and authorized user according to the quality management program in effect at the particular institution

7.1.5 Preparing and/or coordinating environmental preparations (i.e., decontamination supplies)

7.1.6 Observing prescribed radiation safety procedures during the preparation and the administration of such treatment

7.1.7 Assisting the authorized user in supplying proper patient care instructions to hospital staff, patient and/or caregivers

7.1.8 Conducting and documenting radiation surveys of designated patient areas, when indicated

7.1.9 Supplying hospital staff, patient, and/or caregivers with proper instructions on handling and disposal of all contaminated supplies when necessary

ACCREDITATION, APPROVAL, LICENSURE AND MEMBERSHIP

The BHCLR- School of Nuclear Medicine Technology is accredited by The Joint Review Committee on Education Programs in Nuclear Medicine Technology (JRCNMT) and licensed by the Arkansas State Board of Private Career Education. In addition, the school is accredited by the Accrediting Bureau of Health Education Schools (ABHES).
Additional information about the school may be obtained or a complaint filed concerning an established policy and process described in the STUDENT HANDBOOK, by contacting the following state board and professional accrediting agencies.

Inquires regarding the program meeting the JRCNMT standards and fulfilling the state educational requirements as published in the Student Handbook, should direct inquiries to:

Arkansas State Board of Private Career Education (ASBPCE)
Attention: Director
501 Woodlane, Suite 312S
Little Rock, AR 72201-4740
Phone 501 683-8000
Fax 501 683-8050
Email: sbpce@arkansas.gov

Joint Review Committee on Educational Programs in Nuclear Medicine Technology (JRCNMT)
2000 W. Danforth Rd. Ste 130
Edmond OK 73003
Phone 405 285-0546
Fax 405 285-0579
Email: nmtcb.org

Accrediting Bureau of Health Education Schools (ABHES)
7777 Leesburg Pike, Suite 314
N. Falls Church, Virginia 22043
Phone 703 917 4109
E Mail info@abhes.org

BHCLR- School of Nuclear Medicine Technology is a member of the Arkansas Hospital Association.

AFFILIATIONS

Academic
University of Central Arkansas—Conway, Arkansas
Southern Arkansas University—Magnolia, Arkansas

Clinical
Baptist Health Medical Center- Little Rock
Baptist Health Medical Center- North Little Rock
Arkansas Cardiology/Baptist Health Heart Institute
Red River Pharmacy
Arkansas Children's Hospital
Little Rock Oncology and Hematology Associates/Arkansas Cancer Center

ADMINISTRATION

Troy Wells .. President & CEO, Baptist Health

Doug Weeks, FACHE... Sr. Vice President, Hospital Operations
Greg Crain, MHSA FACHE .. Sr. Vice President & Administrator, BHMC-LR

Dr. Judy Pile Ed.D. ... Chancellor and Assistant Vice President
Baptist Health College Little Rock

Brenda Simmons MA, RT(R) ... Coordinator, BHCLR Allied Health Programs

Kevin Forte M.D. .. Medical Director, BHCLR School of Nuclear Medicine Technology

Sharon S. Ward MA, CNMT, RT(N), ASCP(N) Program Director, BHCLR School of Nuclear Medicine Technology

Tracy Hawkins MBA, RT(R) .. Director, BHMC-LR Radiology Dept.

Daniel Guffey BS, CNMT, RT(N)(CT) Faculty, BHCLR School of Nuclear Medicine Technology

CLINICAL INSTRUCTORS

Baptist Health Medical Center Little Rock

Janet Jackson BS, RT(R)(CT) ... Supervisor CT/Nuclear Med
Drew Smith BS, RT(N) ... Coordinator Nuclear Medicine

Brad Temple BS, CNMT, RT(N) ... Clinical Supervisor (students)
Tiago Lewis BS, CNMT ... Staff NMT
Rachel Rutherford BS, CNMT, RT(N) Staff NMT
Kevin Corley BS, CNMT, CT(NMTCB) Staff NMT

Baptist Health Medical Center North Little Rock

Susan Hensley BS, CNMT, RT(R)(N) Clinical Supervisor (students)
Jason Lee BS, CNMT ... Staff NMT
Donna Nelson BS, CNMT, RT(N) ... Staff NMT

Arkansas Cardiology (Baptist Health Heart Group)

Josh Ward BS, CNMT, RT(N) .. Clinical Supervisor (students)
Kelly Hutchins BS, CNMT, RT(N) .. Staff NMT

Little Rock Hematology/Oncology Diagnostic Imaging and PET/CT

Monica Prince BS, CNMT, RT(R)(N) Clinical Supervisor (students)
Miranda Armer BS, CNMT, RT(N)(CT) Staff NMT
Tyler Middlebrooks BS, CNMT, RT(N) Staff NMT
Autumn Jones, BS, CNMT, RT ... Staff NMT
Kaylee Davis BS, CNMT, RT(N) .. Staff NMT
Chelsae Ford BS, CNMT, RT(CT) .. Staff NMT
Arkansas Children’s Hospital

Allen Kinsey BS, CNMT, RT(N) ... Clinical Supervisor (students)
Jeanne Warren BS, CNMT, RT(N) ... Staff Technologist
Ashley Poppe BS, CNMT, RT(R)(N) .. Staff Technologist

Red River Pharmacy (Radiopharmacy)

Michael Brewer, PD .. Clinical Supervisor (students)
April Sanders, PD ... Radiopharmacist
Jill Rosseman PD ... Radiopharmacist

BHCLR PROFESSIONAL STAFF

Rita Reed, MLS ... BHMC Head Librarian
Jamie Clark, MBA .. Business Office Coordinator
P. Hope Coleman, MDiv ... Academic & Spiritual Counselor
Kordevis Davis ... Information Systems
Ana Hunt, MA ... Registrar
Leo Neblett, BBA ... Systems Administrator
Natalie Martin ... Financial Aid Administrator
LaQuinta Fleming .. Financial Aid Advisor
Jenn McDannol MS .. Enrollment Coordinator

BHCLR SUPPORT STAFF

Garrett Gray, BS ... Allied Health Secretary
Thekla Baugh ... AVP Secretary/Accounting Specialist III
Bethany Griffis ... Accounting Specialist II
Melanie Strawn ... Accounting Specialist II
Sharon Eubanks ... School Support Staff
Vicki Deimer ... School Support Staff
Hayli Ellis ... School Support Staff
Wiley Parker, BA .. Accounting Specialist II
Stephen Thomas .. Maintenance Technician
Vanessa Wilson .. Accounting Specialist III

ACADEMIC

ACADEMIC PROGRESS

Students are required to attend all scheduled classes and clinical rotations.

BHCLR utilizes a grading scale to signify student academic progression through a program of study. A final letter grade is assigned for each course. The letter grade has a corresponding rating that denotes the value of student learning. A percent range is used to determine the letter grade. Value points are used to calculate the Grade Point Average (GPA) and for other purposes such as honors awards during the commencement ceremony and scholarship
awards by the Baptist Health Foundation and by others.

The student progresses and promotes through the program of study by completing each required course with at least a minimum final grade average of “C” (77%). The Final Course Grade is determined by the student’s success on course examinations and other required material.

Students are required to attend all scheduled classes and clinical rotations.

The grading scale of the School of Nuclear Medicine Technology for the didactic and clinical curriculum is presented below. A student is required to maintain a minimum final grade of “C” (77%). Failure to do so may result in Academic Dismissal from the program.

All didactic courses utilizes the grading scale for Baptist Health College Little Rock to determine the student theory grade.

Theory Grade:

<table>
<thead>
<tr>
<th>GRADE</th>
<th>RANGE %</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94 – 100</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>86 – 93</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>77 – 85</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>70 – 76</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0 – 69</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawal</td>
<td>0</td>
</tr>
<tr>
<td>WX</td>
<td>Administrative Withdrawal</td>
<td>0</td>
</tr>
<tr>
<td>CR</td>
<td>Credit</td>
<td>0</td>
</tr>
<tr>
<td>NC</td>
<td>No Credit</td>
<td>0</td>
</tr>
</tbody>
</table>

Final course grades are calculated by using scores from written tests and clinical evaluations. Incomplete “I” grades are made up at the discretion of the program director. If the incomplete course work is not made-up according to directions and within the established time-frame, the “I” becomes a final grade of “F”.

Value points are used in the calculation for the determination of the Grade Point Average (GPA). The grade point average is the academic standard that serves many purposes, three (3) examples being:

1. Honors recognition at the Commencement Ceremony.
2. Baptist Health Foundation Scholarship Awards.
3. Approval of Baptist Health Student Loan Program (if available).

Student academic and clinical achievement is measured periodically by written, oral and practical examinations.

A student is required to maintain a minimum final grade of “C” (77% in each course and clinical rotation) in order to progress in the program. Failure to do so will result in Academic Dismissal. In addition, the student is expected to achieve clinical competency in all mandatory and elective procedures as described in the ARRT handbook.

Student grades and credits for courses shall be recorded and permanently maintained by the Baptist Health College Little Rock in the office of the Registrar. The program shall maintain the student’s records permanently, and transcripts can be requested from the program by the graduate for a specified fee at any time.

Clinical grades are tabulated from the rotational clinical evaluations of the student by the clinical Nuclear Medicine
The clinical instructor is to go over the rotation evaluation with the student in a timely manner and discuss any deficiencies that are present. If the evaluation is lower than required, counseling and assistance is given either by the clinical instructor and Program Director. Counseling sessions are documented and placed in the student’s record. A student must pass each clinical rotation with a satisfactory grade of “C” or higher. An unsatisfactory grade and/or performance in a clinical rotation may result in written warning and/or dismissal from the program.

Evaluation outcomes are developed from the objectives and competencies as described in the curriculum for both academic and supervised clinical education components. These outcomes are calculated at the end of each semester and shared with the student. Students not meeting the necessary clinical or didactic achievement levels expected may be placed on probation for a specified period of time. During probation, student evaluations are closely monitored, clinical deficiencies are discussed and a plan for improvement is implemented and documented. Students are counseled, given assistance if needed (extra practice, and so forth) and other additional support.

A student not demonstrating the necessary progressive development in classroom and clinical education shall not be allowed a second probationary period.

An incomplete “I” grade may be completed at the sole discretion of the Program Director. If not completed by the established time, “I” will convert to a final grade of “F.”

Satisfactory Progress

The student must maintain a 2.0 or higher grade point average (GPA) in each course and clinical rotation. If at any time the student’s average is less than required, he or she shall be placed on Academic Probation. A student who does not obtain the required GPA during a probationary period may be academically terminated (see section on “Remediation”).

APPLICATION AND ENTRY PROCESS

The application process is initiated when the school first receives a required document/material from the applicant. An applicant file is then established. Once all required information and materials are received, the applicant is scheduled for a personal interview with the selection committee. The interview completes the application process.

The paramount responsibility of the school is protection of the public in the selection of applicants, education and promotion of students through the program of study and graduation of individuals for entry into the profession. This responsibility is fulfilled through established policies and corresponding process decision-making activities.

The application process is initiated upon receipt of a completed application form and continues with the receipt of an official transcript from an accredited college/university reflecting a baccalaureate degree or completion of the prescribed pre-professional curriculum at the University of Central Arkansas or Southern Arkansas University for a Bachelor of Science degree in Nuclear Medicine Technology. In addition, the transcript must reflect successful completion with a “C” or higher in each of the following prerequisite courses: College Algebra, General Chemistry with Lab, General Physics with Lab, Human Anatomy and Physiology with Lab and general education courses in Oral and Written Communications, Social Science and a humanities course.

The applicant completes two (2) processes before admission to the program is complete: the Application Process and the Entry Process. Specific materials and information are required for each.

Application Requirements

1. Submission of a completed Application for Admission Form indicating former and current education and former and current employment.
2. One (1) official transcript from each educational institution attended; and either an official high school transcript reflecting a minimum cumulative Grade Point Average (GPA) of 2.5 or higher or a General Education Diploma (GED) minimum composite score of 50 or higher.

3. A baccalaureate degree from an accredited college or university, or,

4. Have three years of prescribed curriculum from the University of Central Arkansas or four years at Southern Arkansas University with a cumulative GPA of 2.5 or higher and eligible to receive a B.S. degree upon completion of the BHCLR School of Nuclear Medicine Technology from the affiliate (3 + 1 or 4 + 1 program).

5. Foreign students must have a TOFEL (Test of English as a Foreign Language) examination and obtain a minimum score of 550 or a computer-based score of 213.

6. American College Test (ACT) results reflecting a minimum score of 21 is preferred.

7. Completed Personal Statement Form.

8. Two (2) personal recommendations from teachers, clergy or employer personnel; family members are not acceptable.

9. Complete Demographic Data Form (optional).

10. Personal interview with the Selection Committee.

11. Provide additional information as requested by the school.

12. Criminal Background Check (CBC), Social Security Verification (SSV) and other background checks forms are signed and the process initiated after acceptance into the program. The complete list of mandatory background checks changes periodically, and can be found in the General Section of the Student Handbook.

13. Note that the BHCLR School of Nuclear Medicine Technology does not accept advanced placement nor transferred credit from any other allied health or nursing program, including other programs in nuclear medicine technology. All entering students must complete the twelve (12) month program in its entirety at the Baptist Health College Little Rock campus and our affiliate clinical sites.

14. Satisfactory completion of the application process.*

*Satisfactory completion indicates that all application requirements have been fulfilled by the applicant.

Entry Requirements

1. Immunization record reflecting the requirements as stated in the General Section of the Student Handbook and in the Application and Admission Information Section of the Catalog.

2. Signed statement form attesting to the applicant’s ability to perform the Essential Requirements (technical performance standards) as published in this Student Handbook.

3. Official Grade Report for high school/college courses enrolled in at time of application and a letter of verification from the respective School/College Counselor/Advisor;
4. Submission of health professional certification or license for visual observation as applicable;
5. Negative entry drug screen (conducted at the Schools);
6. Participate in the New Student Orientation Program (NSOP);
7. Provide additional information as required by school; and
8. Satisfactory completion of entry process.*

*Satisfactory completion is defined as fulfillment of all entry requirements.

Entry and Graduation

The entry registration and graduation dates are reflected on the school calendar herein contained.

Prerequisite Requirements (Minimum)

Completion of prerequisites with a minimum final grade of “C” in the following courses:

1. 3 credit hours College Algebra
2. 4 credit hours General Chemistry (includes laboratory)
3. 4 credit hours College Physics (includes laboratory)
4. 4 credit hours Human Anatomy and Physiology (includes laboratory)
5. 3 credit hours Oral Communications
6. 3 credit hours Written Communications
7. 3 credit hours Social Studies
8. 3 credit hours humanities course

Application Final Date

In accordance with the entry registration date, the Selection Committee must complete its work prior to arrival of the entering class. In order to facilitate selection of the incoming new class and its entry registration, a preferred application final date of March 1st has been established. The applicant process must be completed by March 15th.

Selection Committee

The Selection Committee conducts a personal interview with each applicant. Each applicant who completes the application process is reviewed for acceptance through an individualized, competitive and nondiscriminatory basis by the Selection Committee. Acceptance for entry to the School is on a competitive basis as opposed to a first come first serve. The highest qualified applicants are first accepted from the applicant pool composed of individuals who have completed the application process. The process if followed until the prescribed class size is reached. The focus of the interview is on the applicants’ rationale for pursuing the program of study, and on the written personal references reflecting assessment of attitude, integrity, motivation and ability. Overall college GPA and Science GPA as well as the composite ACT score is weighted very heavily (approximately 70%) on the interview tool. The committee consists of the Program Director of the school and one to two other panel members who may be faculty members of Baptist Health College Little Rock and/or Clinical Faculty from the Nuclear Medicine Departments at BHMC-LR or BHMC-NLR. The interview completes the application process.
Selection Process

The Selection Committee reviews each Applicant File for entry to the school after the File is complete. Selection for entry is on a competitive basis, as each entering class is limited in number. The committee formulates a recommendation for each applicant and forwards it to the Program Director for final action. The applicant is notified within two weeks after the interview of the decision.

The process of selection includes a review of the completed Applicant File and the personal interview score(s). Each applicant is ranked according to qualifications, with the highest qualified being number one (1). The process is continued until the class is filled. Qualified applicants not included in the selected class number, are placed on the Alternate List.

The highest qualified alternate is ranked number one (1) and so on. Alternates are notified by rank number if spaces in the class become available. Alternates are strongly encouraged to keep their file active by contacting the Program Director, and obtaining academic advice. Alternate status does not guarantee the applicant a future position in the next entering class or any future class. The alternate should contact the Program Director before the March 1st deadline of the next school year and request that the file be kept active. If the time since last inquiry is greater than one (1) calendar year, the individual must update the file as requested by the school.

Applicants selected for entry are expected to notify the school of intent to register by returning a special form to the school prior to a registration date. Selected applicants not registering, who seek admission at a later date, have no preferential status and will be reconsidered for acceptance at the time as new applicants for the next class.

COST OF PROGRAM

Total cost of the program at the time of handbook publication was approximately $10,132.00. This amount covers all costs of the program including: tuition for all courses, course materials, lab coat patches, uniforms and lab coat (estimated cost), board certification fees, approximate cost of textbooks and parking. The cost is subject to change without notice pending variations in expenses associated with overall operation of the school and potential changes in fees associated with the board certification exams. A Student Direct Cost flier is available on-line at BHCLR.edu and at the BHSC business office. (see Appendix I)

The additional costs that will occur during March of the Spring semester will be the board certification fees paid by the student to the American Registry of Radiologic Technologists (ARRT) and to the Nuclear Medicine Technology Certification Board (NMTCB) for the nuclear medicine technology board exams. The total cost for these two exams will be approximately $375. The approximate cost for the Arkansas State Licensure (required if the student plans on working in Arkansas after graduation) is $45, payable in June prior to graduation. If the graduate decides to seek employment in a different state, they should be aware that there may be a different cost for that state’s license.

FINANCE

A financial aid officer is available on the campus for students. The financial aid officer can be contacted at 501-202-7986 for questions concerning scholarships, financial, etc.

TUITION REFUND

Payment in full is expected for all expenses associated with tuition, fees, books and course related cost at time of registration. A non-refundable enrollment deposit is due upon notification of selection. The deposit is applied to tuition at first registration. Expenses associated with fees, fines, books, course materials, uniforms. Activities and ceremonies are not refunded. A student officially withdrawing from a school may be eligible for a refund of tuition. Refunds are made after all outstanding balances to the school and supporting institutions are paid.
All Administrative Fees in excess of $100 will be refunded at any time during the semester.

The refund* policy applies to the time period beginning with the published first class date according to the following schedule:

REFUND METHODOLOGY FOR ALLIED HEALTH STUDENTS:
(Allied Health Refund Methodology applies only to the schools licensed by the Arkansas Board of Private Career Education. All other programs fall under the Nursing Refund Methodology.) *see Appendix I*

If the official date of withdrawal falls:

- Between 0 and 25% of the semester duration, the refund is calculated on a pro rata basis.
- Between 25 and 50% of the semester duration = 50%
- Between 50 and 75% of the semester duration = 25%
- Between 75 and 100% of the semester duration = 0%

Tuition refunds by Baptist Health College and affiliating colleges and universities are made upon withdrawal in accordance with the respective policies of each entry. Baptist Health School of Nuclear Medicine Technology’s refund policy is applied after financial settlement of the student’s account and official clearance, during the semester term for which the refund is being requested (see Withdrawal).

*Includes classroom lectures, field trips, skills laboratory, and clinical laboratory of any scheduled learning experience. Refunds of tuition are made after all outstanding balances to the respective school are paid. Expenses associated with fees, fines, books, equipment, supplies and uniforms are not refunded.

LENGTH OF PROGRAM

The program of study is twelve (12) months in length. One (1) week break/vacation is scheduled during the Fall Semester, a three (3) week vacation during Christmas before the start of Spring Semester, and one (1) week in late-March (Spring Break). In addition, the school provides six (6) Holidays. The combined total of break/vacation days and holidays equals approximately six (6) School weeks that the student is not engaged in contact study with the school.

POLICIES

After selection, the student is given a “take-home test” concerning school policies. They can access this Student Handbook which contains detailed information regarding policies and requirements for progression and graduation associated with the program of studies online at www.BHCLR.edu. The student returns the test on the first day of classes (Orientation Day). On entry to the School, the student receives a copy of the Student Handbook. School policies and clinical policies are endorsed by the school’s advisory board and will be followed. Failure to do so can result in dismissal from the program. The school may add additional policies as needed at any point during the program.

Academic schedules and clinical schedules are posted monthly. It is understood that upon registration, a student agrees to fulfill the assigned course schedule, fulfill the attendance requirements of all scheduled learning assignments and abide by all school policies.

The following objective and policies provide direction for decision making related to student attendance during classroom and clinical assignments, and are effective immediately.
ATTENDANCE POLICIES

Absences

A student is expected to attend all scheduled classes and clinical rotations. An absence is excused only in the event of an emergency. Students should contact the Program Director and the Clinical Supervisor of their assigned clinical rotation as soon as possible when he or she cannot attend class or clinical. Students missing class or clinical time without notifying both the Program Director and the Clinical Supervisor of their assigned rotation may be issued a written warning which will be kept in their permanent file.

Absences from classroom or clinical assignments for personal income purposes are considered unexcused absences from the school. Falsifying attendance will result in appropriate disciplinary action, which may include dismissal from the school. Clinical assignments may not be completed by another student.

Continued absences or tardiness is a symptom of negligence or irresponsibility, and is not in keeping with the Baptist Health Values of service, honesty, respect, performance, and stewardship. Therefore, excessive absences or tardiness may result in dismissal from the school.

Absence is defined as not being present after one (1) clock hour for a scheduled class or clinical rotation.

All absences (excused and/or unexcused) from either clinical or classroom must be made up in the clinical rotations by the end of the school year. The student is required to make-up the absent time on weekends and evenings, at the end of the school year or during one of the scheduled breaks. Make-up time must be scheduled with the prior approval of the Program Director and Clinical Supervisor of the rotation in which the Absence occurred. Absences in excess of three (3) absences (excused and/or unexcused) in any semester will result in the clinical grade being dropped by one letter grade. Cumulative absences in excess of five (5) in any semester or during the school year, even with the time being made up, will result in the current semester’s clinical grade being dropped by two letter grades, a written warning being issued, and possible termination from the program if the clinical grade is below a “C”. Additional absences in any semester or during the school year will result in the clinical grade being dropped by three letter grades, a written warning being issued, and will result in termination from the program.

Time lost from absences for part of a day from either class or clinical rotations for scheduled physician and dentist appointments should be made up within two weeks of the missed time. Other absences should be made up within three weeks of the absence. The student is expected to attempt to make physician and dentist appointments at the end of the class or clinical day.

Disciplinary actions related to unexcused absences:

1. Written warning: First unexcused absent day.
2. Probation status: Second unexcused absent day.
3. Dismissal may result after the third unexcused absent day.

Any absences must be made up during the scheduled break times (Fall Break, Christmas Break, Spring Break or after Commencement). A student may make up hours, with permission of the clinical rotation facility and the program director, by staying later or coming in earlier to the clinical rotation. Also, time may be made up at BHMC-LR on Saturdays where the student may participate in the weekly quality control on the SPECT cameras.

Students still making-up time at year-end shall participate in the Commencement Ceremony, however, Graduation shall not occur, and the Diploma/Certificate is withheld along with the Registry graduation verification until the time is made up and all graduation requirements are fulfilled.
Tardiness

Defined as not present up to one (1) clock hour of a scheduled class or arriving in the assigned clinical area at any time (up to one clock hour) after the scheduled time to be present has passed. A tardy is recorded, if the student arrives in clinical or class after their scheduled time to be present has passed. Three (3) or more documented Tardy Occurrences shall cause disciplinary action.

Absences of one (1) class period equals one (1) tardy.
Three (3) tardies equals one (1) day absence.

Disciplinary actions for tardiness:

- Written counseling: Three (3) tardy times (counts as one [1] day of absence)
- Written warning: Six (6) tardy times (counts as two [2] days of absence)
- Probation status: Nine (9) tardy times (counts as three [3] days of absence)
- Tardy times in excess of nine (9) may result in immediate dismissal.

Any tardies resulting in absence days will be made up during the scheduled break times (Fall Break, Christmas Break, Spring Break or after Commencement).

In addition, points from the clinical grade will be deducted for each tardy over one [1] as follows:

1 Tardy: no points deducted
2-9 Tardies: 2 points/tardy deducted
>9 Tardies: potential failure of clinical semester

MAKING UP TIME

Time missed from either the clinical or classroom schedule must be made up in the clinical area. The time must be scheduled with the Program Director and the Clinical Supervisor of the clinical area in which the time will be made up. On the official form, a Nuclear Medicine Technologist must verify the exact time that the student arrived in the clinical area and left. This form must be turned in to the Program Director the next scheduled class. Any time made up that is not properly documented will not be accepted.

ESSENTIAL REQUIREMENTS

The Essential Requirements (non-academic) established for the program describe the essential requirements that must be met by all students. Essential requirements reflect the physical requirements that students must be capable of engaging in during the educational activities in such a way that they will not endanger other students or the public, including patients. The student must be able to perform and maintain the following physical standards and essential Requirements throughout enrollment in the program:

<table>
<thead>
<tr>
<th>Standards</th>
<th>Essential Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Visual/Hearing</td>
<td>Read and apply appropriate instructions in patient charts and on requests, procedure manuals, computer screens and particularly small print on syringes and vials. Visually monitor patients in a dimly lit room. A minimum vision of 20/20 or corrected to 20/25 in at least one eye. Hear various equipment and background sounds during equipment operations. Hear normal conversational speech at 10 feet.</td>
</tr>
<tr>
<td>2. Communication/Behavioral</td>
<td>Communicate, in English, both verbally and in writing in a</td>
</tr>
</tbody>
</table>
clear and concise manner in order to transmit information to
the patient, all members of the health care team, and to
individuals in various departments. Students and technologists
must be able to assess non-verbal communication. In
addition, it is essential that the student be able to write both
legibly and quickly in order to document on charts and patient
requests. Reading skills are essential for reading physician
orders, and understanding departmental and hospital policies.

3. Fine Motor Skills/Movement

Lift fifty (50) pounds of weight using both hands
simultaneously. Move immobile patients from stretcher to
imaging table with assistance from departmental personnel.
Push and maneuver patient stretchers with IV poles and
imaging equipment safely. Utilize computer keyboard, mouse
and monitor in order to input and manipulate clinical data.
Possess all skills necessary to carry out diagnostic procedures
and manipulate clinical data. Perform phlebotomy safely and
accurately.

4. Locomotion

Possess the ability to move freely from one location to another
by use of both legs in physical settings of the department,
patient room, elevator and stairway in order to perform duties
and respond quickly to life-threatening emergencies in the
clinical area. Push standard wheelchair and stretcher. Must be
capable of standing for a minimum of 8 (eight) hours per day.

5. Intellectual/Conceptual

Possess the emotional health required for full utilization of
intellectual abilities. Recognize emergency situations and take
appropriate actions through critical thinking. Understand and
apply clinical instructions given from departmental personnel
in order to effectively carry out diagnostic procedures.

6. Safety

Must be able to adhere to organizational policies to maintain
safety in the environment for the patient, self and others.

PROFESSIONAL CURRICULUM

The curriculum is organized into two (2) semesters and leads to a certificate at the end of the program. During
enrollment, students attend approximately 600 hours of didactic (classroom) instruction and 1,000 hours of clinical
instruction. Students spend clinical practice time in the Nuclear Medicine departments of both Baptist Health
Medical Center in Little Rock, Baptist Health Medical Center in North Little Rock, Arkansas Cardiology, Children’s
Hospital and Little Rock Hematology and Oncology Assoc./Arkansas Cancer Center (PET/CT). Rotations also
include a Radiopharmacy rotation at Red River Pharmacy and a CT rotation at BHMC-LR.
COURSE DESCRIPTIONS

SEMESTER I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 0001</td>
<td>Spiritual Perspectives in Healthcare</td>
<td>1</td>
</tr>
<tr>
<td>NM 4108</td>
<td>Clinical Practicum I</td>
<td>8</td>
</tr>
<tr>
<td>NM 4101</td>
<td>Medical Terminology</td>
<td>1</td>
</tr>
<tr>
<td>NM 4604</td>
<td>Instrumentation I</td>
<td>4</td>
</tr>
<tr>
<td>NM 4204</td>
<td>Diagnostic Nuclear Medicine I</td>
<td>4</td>
</tr>
<tr>
<td>NM 4404</td>
<td>Nuclear Physics /Radiochemistry</td>
<td>4</td>
</tr>
<tr>
<td>NM 4201</td>
<td>Medical Ethics and Law</td>
<td>1</td>
</tr>
<tr>
<td>NM 4102</td>
<td>Patient Care</td>
<td>2</td>
</tr>
<tr>
<td>NM 4504</td>
<td>Radiopharmacy/Radionuclide Therapy</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 29

SEMESTER II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM 4203</td>
<td>Diagnostic Nuclear Medicine II</td>
<td>3</td>
</tr>
<tr>
<td>NM 4320</td>
<td>Clinical Practicum II</td>
<td>10</td>
</tr>
<tr>
<td>NM 4302</td>
<td>Instrumentation II</td>
<td>2</td>
</tr>
<tr>
<td>NM 4202</td>
<td>Computed Tomography (CT, PET/CT)</td>
<td>2</td>
</tr>
<tr>
<td>NM 4104</td>
<td>Diagnostic Nuclear Medicine III</td>
<td>4</td>
</tr>
<tr>
<td>NM 4303</td>
<td>Diagnostic Nuclear Medicine IV</td>
<td>3</td>
</tr>
<tr>
<td>NM 4703</td>
<td>Radiation Health Physics</td>
<td>3</td>
</tr>
<tr>
<td>NM 4301</td>
<td>Radiobiology</td>
<td>1</td>
</tr>
<tr>
<td>NM 4601</td>
<td>Senior Seminars</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 29

Totals: Courses - 18

Credit Hours - 58

COURSE DESCRIPTIONS

SEMESTER I

SP 0001

Spiritual Perspectives in Healthcare 1 Credit Hour

A study of the concept of spiritual perspective of the whole person and the relationship of this to healthcare
practice is examined from the perspective of an individual quest for purpose and meaning as well as
examination of the major religions as avenues of spiritual expression.

NM 4404
Nuclear Physics/Radiochemistry 4 Credit Hours

Fundamentals of basic atomic and nuclear physics, including the structure of the atom, modes of radioactive
decay, mathematical calculations of radioactivity, passage of charged particles and high energy photons
through matter, and the primary and secondary sites of radionuclide production.

NM 4204
Diagnostic Nuclear Medicine I 4 Credit Hours

Comprehensive study of the theory and methodology of imaging the different systems in the body, including
rationale and indications for the study, patient preparation, radiopharmaceuticals used, imaging techniques,
computer processing applications and diagnostic interpretation. Each section will be correlated with
clinical exams performed in the clinical setting.

NM 4101
Medical Terminology 1 Credit Hour

Introductory course in the basics of building, spelling and pronouncing medical words designed as a self-
directed course.

NM 4201
Medical Ethics and Law 1 Credit Hour

Medicolegal and ethical principles involved in the practice of Nuclear Medicine Technology. Topics
covered include the code of ethics and the legal implications of negligence and malpractice in the clinical
nuclear medicine setting.

NM 4102
Patient Care 2 Credit Hours

This course on patient care is presented in individual sections, taught by professionals and specialists in the
particular topic. The course covers the principles and techniques of patient care, including
cardiopulmonary resuscitation (CPR) certification, patient transport, ECG monitoring, physical assessment,
pharmacology, venipuncture and I.V. therapy. Emphasis is placed on skills that are used by the technologist
in the clinical setting.

NM 4108
Clinical Practicum I 8 Credit Hours

Introduction to Clinical Imaging. Students will be evaluated during each assigned clinical rotation during the semester.

NM 4504
Radiopharmacy/Radionuclide Therapy 4 Credit Hours

Fundamental principles of radiopharmacology, including radiopharmaceutical preparation and quality
control, biochemical and physiological properties of radiopharmaceuticals, methods of localization and
alterations of distribution, and the therapeutic use of radionuclides in nuclear medicine. Correlation with
the clinical laboratory experience included.
NM 4604
Instrumentation I 4 Credit Hours

Principles of operation and quality control of non-imaging nuclear medicine radiation detection equipment to include a section on statistics as they apply to the practice of nuclear medicine technology. Correlation with the clinical experience included.

SEMESTER II

NM 4203
Diagnostic Nuclear Medicine II 3 Credit Hours

Continuation of Diagnostic Nuclear Medicine I.

NM 4310
Clinical Practicum II 10 Credit Hours

Intermediate techniques in clinical imaging, radiopharmaceutical preparation, computer techniques and radiation health physics. Students will be evaluated during each assigned clinical rotation during the semester.

NM 4104
Diagnostic Nuclear Medicine III 4 Credit Hours

Continuation of Diagnostic Nuclear Medicine II

NM 4302
Instrumentation II 2 Credit Hours

Principles of operation and quality control of collimated imaging radiation detectors.

NM 4202
Computed Tomography (SPECT, CT, PET/CT) 2 Credit Hours

Emphasis will be placed on the operation and quality control of both Single Photon Emission Tomography (SPECT), Positron Emission Tomography (PET), and Computerized Tomography (CT). Basic principles and concepts of the modern computer, with emphasis on the application of computers and data processing in the Nuclear Medicine Department. Correlation with the clinical experience included.

NM 4303
Diagnostic Nuclear Medicine IV—Diagnostic Procedures 3 Credit Hours

Comprehensive study of the theory and methodology of various in vitro procedures such as the Red Cell Mass, RISA Plasma Volume, Red Cell Survival Study and Splenic Sequestration Study. Includes monoclonal antibody imaging, somatostatin-receptor imaging and radiolabeled peptide imaging procedures, PET/CT as well as other oncological diagnostic imaging studies. Correlation with the clinical experience included.
NM 4301
Radiobiology 1 Credit Hour

Biological effects of the exposure of living tissue to ionizing radiation, including chronic and acute effects, the relative sensitivity and resistance of organ systems, and cellular and systematic response of tissue to radiation.

NM 4703
Radiation Health Physics 3 Credit Hours

Principles involved in minimizing exposure to patient, personnel, self and environment are discussed. Included are techniques for measuring levels of radioactive contamination, procedures for decontamination and a general overview of both national and state government regulatory issues regarding exposure and radioactive material handling. Correlation with the clinical laboratory experience included.

NM 4601
Senior Seminars 1 Credit Hour

Topics covered include medical informatics, healthcare administration and health sciences research methods as they relate to the field of Nuclear Medicine Technology.

SCHOOL CALENDAR
2015-2016

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Start</td>
<td>Monday, July 6</td>
</tr>
<tr>
<td>New Student Orientation</td>
<td>Monday, July 6</td>
</tr>
<tr>
<td>Labor Day (campus closed)</td>
<td>Monday, September 7</td>
</tr>
<tr>
<td>Fall Break</td>
<td>September 21-25</td>
</tr>
<tr>
<td>Thanksgiving (campus closed)</td>
<td>Thursday, November 26</td>
</tr>
<tr>
<td>Day after Thanksgiving (campus closed)</td>
<td>Friday, November 27</td>
</tr>
<tr>
<td>Christmas Break</td>
<td>December 14 – January 1</td>
</tr>
<tr>
<td>Spring Semester Begins</td>
<td>Monday, January 4</td>
</tr>
<tr>
<td>Spring Registration</td>
<td>Tuesday, January 19</td>
</tr>
<tr>
<td>Spring Break</td>
<td>March 21 - 25</td>
</tr>
<tr>
<td>Memorial Day</td>
<td>Monday, May 30</td>
</tr>
<tr>
<td>Last Day of Classes</td>
<td>Wednesday, June 8</td>
</tr>
<tr>
<td>Commencement</td>
<td>TBA</td>
</tr>
<tr>
<td>Graduation</td>
<td>*as appropriate</td>
</tr>
</tbody>
</table>

*Students having “time” to make-up, do not graduate until verification is provided that all “time” has been made up and graduation requirements fulfilled.

CLASSES AND CLINICAL ROTATIONS

Classes begin on July 6, 2015 and end on June 8, 2016 with commencement tentatively scheduled for the following Monday, June 13. Classes are scheduled on a regular basis and may be scheduled either in the morning, afternoon, or all day, depending on the courses being taught at the time. Most of the classes are taught at the Baptist Health
Support Center, but some courses may be scheduled in various rooms at Baptist Health Medical Center in Little Rock as needed. The June schedule of classes is distributed to students during New Student Orientation (NSO) and will be updated on a monthly basis during the year.

At the beginning of each course taught in both the clinical and the didactic setting, the student will be provided with written course syllabi with detailed learning objectives and performance criteria for determining satisfactory achievement of the objectives. The principles taught in the didactic portion of the curriculum are correlated with the clinical objectives in the performance of nuclear medicine procedures, patient care, radiation safety, record keeping, quality control and radiopharmacy techniques. The course syllabi, outlines, objectives and other supplementary information are also available to the student on Moodle at the BHCLR.edu website.

Some courses have clinical laboratory demonstrations and practicals taught concurrently with the lecture topics. This approach gives the students hands-on experience and visual reinforcement of the principles learned in the classroom. Labs are scheduled by the clinical instructor and the student may be given time to complete the laboratory assignments on his/her own, depending on the course and the particular instructor. The supervised clinical education of the student is designed to assure competent performance of an appropriate number and variety of procedures.

Students are required to participate in the clinical setting as scheduled during the entire twelve (12) month Class Year. Student rotations include the Nuclear Medicine imaging rooms and PET imaging at Baptist Health Medical Center-LR (BHMC-LR), Baptist Health Medical Center-NLR (BHMC-NLR), Arkansas Cardiology (Baptist Health Heart Institute), Little Rock Hematology/Oncology Associates/Arkansas Cancer Center (PET/CT) and diagnostic imaging, Arkansas Children’s Hospital, and Red River Pharmacy.

Students are scheduled to be in class or clinical Monday through Friday. Clinical days are typically 7:30 a.m. to 4:00 p.m. (0730-1600) with the exception of the BHMC-LR QC/Hot Lab rotation from 6:00 a.m. to 2:30 p.m. (0600-1430). The other clinical sites have specific times that they want the student to begin their rotation and this schedule will be given to the student at the beginning of the clinical rotations in August. Class days are 7:30 a.m. to 4:00 p.m. (0730-1600). Students are not required to work weekends, overtime, or take call. If a student desires to remain in the clinical area overtime in order to observe and/or assist with a procedure, compensatory time-off is not given. If necessary, students may request permission from the Program Director to schedule make-up time after 4:00 p.m. in the imaging clinical areas, on Saturdays at BHMC-LR or on specific days during scheduled vacation time.

Students must demonstrate and have written verification of competency in a selected list of imaging and non-imaging procedures as required by the ARRT board of registry prior to commencement. The appropriate forms and instructions for completing the forms will be handed out to each student at the beginning of the year, prior to beginning the clinical experience. Students must demonstrate competency in 19 different procedures on the list and at least 6 additional procedures on the list. The required competencies will be included in the student’s clinical rotation packet. Students are encouraged to begin working on their competencies as soon as their clinical rotations begin. A student must pass each clinical rotation with a satisfactory grade of “C” or higher. An unsatisfactory grade and/or performance in a clinical rotation may result in a written warning and/or dismissal from the program. In order to complete a competency, the student must demonstrate proficiency in all aspects of performing the procedure, and must be able to answer satisfactorily all questions posed by the technologist or radiopharmacist evaluating their performance.

MAKE-UP WORK

Class assignments and exams missed must be made up. It is the student’s responsibility to meet with the Program Director to review and obtain make-up assignments and arrange to take the missed exam. A student who continually completes assignments late or has to make up tests more than one time, may be in danger of disciplinary action, which may result in being terminated from the program.
REMEDIATION

A student who fails to maintain a passing grade of “C” in either the clinical or didactic area, may be allowed to formally appeal the grade, request remediation of the failed material or clinical rotation at the Program Director’s discretion. This remediation time will be in addition to the regularly scheduled time for both classes and clinical and will include, but is not limited to, written and/or oral examination and additional assignments as deemed appropriate by the instructor. The amount of time needed for the remediation and the requirements will be determined prior to the beginning of the term of remediation by the Program Director. Failure to achieve a passing score of “C” at the end of the remediation will result in termination from the program. Remediation of a clinical rotation or repeating the rotation may not be possible if the clinical site is unable or unwilling to have the student return to their facility, which may result in termination from the program.

ACADEMIC ADVISING

The Program Director and the School Chaplain serve as the primary academic advisors to students. Additional conferences are initiated through advisor-advisee arrangements.

Advising is available to a student in the following areas:

1. Adjustment to student role,
2. Adjustment to clinical area,
3. Study habits,
4. Tutoring,
5. Test taking.

SPECIAL REQUIREMENTS FOR UNIVERSITY (UCA, SAU) STUDENTS

Students enrolled at the University of Central Arkansas or Southern Arkansas University are encouraged to consult with their Nuclear Medicine Advisor at their respective college to assure completion of all general education and specific program prerequisites. UCA students must meet with their college advisor during the spring semester (usually April) in order to complete all necessary requirements for graduation and the commencement ceremony in August at UCA. All applicants are encouraged to contact the Program Director of the School of Nuclear Medicine Technology during their sophomore year in college for additional information.

Although the affiliate student will have already graduated from the BHCLR School of Nuclear Medicine Technology and received their certificate prior to the commencement ceremony at the affiliate, the student must complete all the necessary paperwork with the college to verify that they will be or have been awarded the Bachelor’s Degree. For those students who do not already possess a bachelor’s degree prior to the completion of the program, special arrangements will need to be made with the affiliate college to have an associate’s degree (AA) awarded to the student prior to the last day of classes in June so that there will not be a delay in the student taking the ARRT board of registry.

GRADUATION REQUIREMENTS

1. Fulfill all Progression and Promotion Criteria;
2. Complete the Student/Graduate Clearance Form and process;
3. Cooperate in the taking of Class and Individual Senior photo session arranged by school;
4. Participate in Commencement Ceremony and Practice, wearing the school required attire*;
5. Successful Criminal Background Check Record and random drug screens;

6. Successful completion of the Program of study;

7. Satisfactory demonstration of Terminal Objectives;

8. Successful completion of the Clinical Competency Requirements as outlined by the ARRT Certification Handbook; (see Appendix III)

9. Satisfactory demonstration of a minimum level of competency as set forth in the Objectives of the program.

11. Application to sit for the national certification board exams.

*Entire personal appearance. An instruction sheet outlining the appropriate dress attire to be worn under the commencement gown will be given to the students approximately three weeks prior to the ceremony.

CERTIFICATION AND CREDENTIALS

Completion of the program and graduation assures eligibility to apply for national certification with the two (2) boards of registry: the Nuclear Medicine Technology Certification Board (NMTCB) and the American Registry of Radiologic Technologists (ARRT[N]).

Successful candidates are recognized as registered Nuclear Medicine Technologists, having demonstrated a commitment to maximal quality performance in the profession. The professional signs the credential “CNMT” and “RT(N)” and has full privileges as a member of the profession.

Students will register for both of these national board exams in March. Payment is to be made out to each of the boards and the applications and checks will be taken up and mailed to the respective agencies by March 15. The 2015 costs for the two board exams was $375. The NMTCB and the ARRT are typically scheduled to be taken as soon as classes are completed or the week of graduation.

In addition, in June prior to graduation, those students who plan on remaining in Arkansas will need to apply for their temporary Arkansas State Health License in order to work as a Nuclear Medicine Technologist in the state of Arkansas. The approximate cost of this licensure is $45. Students seeking employment in other states will need to verify the licensing requirements of that state and begin the licensing process as soon as possible.

Students are encouraged to go to the web sites of the two certification boards and become familiar with the mandatory continuing education requirements for each certification.

STUDENT APPEAL/DISCIPLINARY/DRESS CODE

The School supports the BHCLR policies summarized in the General Information content. Detailed and specific elaboration on the policies and subsequent processes are published in the General Section of this Student Handbook.

BEHAVIORAL EXPECTATIONS IN CLINICAL ROTATIONS

1. Students are required to be in the assigned clinical department at all times other than when in class, on break, or at lunch, or when performing an assigned responsibility that will take them out of the department.
2. Students are expected to participate in all phases of clinical studies as scheduled. Students are not allowed to exchange clinical rotations with other students. If a problem arises within the clinical area concerning rotations, the problem should be discussed with the Program Director and the Clinical Supervisor of the Student’s clinical rotation in order to arrive at a solution.

3. The Clinical Competency Forms, as required by the American Registry of Radiologic Technologists (Nuclear Medicine), must be completed and turned in to the Program Director during the year as they are finished. All Competencies must be completed and turned in by the end of May. It is the responsibility of the student to make sure that they have met all the competency requirements. If the student is having difficulty meeting all of the requirements, it is their responsibility to notify the Program Director and/or Clinical Supervisor early in the program so that arrangements can be made for the completion of the competency. Students failing to complete the required Competencies will not graduate until they have completed each of the requirements, nor will they be allowed to sit for the board exams until they have completed the Competencies. (see Appendix III)

4. Clinical Evaluation Forms are to be filled out for each clinical rotation by the clinical instructor, clinical supervisor, or Program Director. These clinical evaluations will help to determine the progress of the student and in what areas the student may be having difficulty. Any student failing a clinical evaluation will be counseled by the clinical supervisor and the Program Director and the course of action determined at that time (see section on “Remediation”). Because the BHCLR School of Nuclear Medicine Technology is a 12 month program, an individual clinical rotation in which a student has received a failing grade “F” will be unable to be repeated, unless the student can complete the rotation during break periods or after the end of the school year. Failure of a clinical rotation with a refusal from the clinical site to allow the student to repeat the rotation at their facility will most likely result in dismissal from the program. (see Appendix II)

If there is a problem area, the problem will be defined and a solution will be attempted. Any student needing additional individual attention in order to become competent in a specific area will be given that attention by the Program Director and/or the clinical supervisor. As long as the student is willing and demonstrates an ability to learn and work agreeably with the technologists, he/she will not be placed on probation.

If a student is unable or unwilling to attempt to improve, he/she may be placed on probation, the length of which shall be determined by the Program Director according to the individual case. If, at the end of the probationary period, the student has not demonstrated significant improvement, dismissal from the program may be the only recourse.

Students rotating at BHMC-Little Rock can place their Clinical Evaluation Forms in the lock-box provided.

CLINICAL ROTATIONS: Clinical instruction will take place at each of six different locations:

BAPTIST HEALTH Medical Center-Little Rock Nuclear Medicine Department: Clinical time at this institution will be spent performing various diagnostic and therapeutic procedures. The students’ clinical supervisor at BHMC-LR, Brad Temple (202-2257), and the Lead Technologist, Drew Smith (202-2257) are responsible for the student’s clinical training during the rotation as well as overseeing the evaluation of the student by each clinical instructor. The student will rotate each room in the clinical Nuclear Medicine area on a scheduled, rotating basis. Periodically, the student will be rotating with a different technologist in order to give him/her a more varied clinical education.

BAPTIST HEALTH Medical Center-North Little Rock Nuclear Medicine Department: Clinical time at this institution will be spent performing various diagnostic and therapeutic procedures. BHMC-NLR is a part of Baptist Health and as such can be considered as an extension of the BHMC-LR Nuclear Medicine Department. The clinical supervisor at this facility, Susan Hensley (202-3564), is responsible for the student’s clinical training and evaluation during the rotation. Rotation will not be scheduled on a room
assignment basis as there are only three imaging rooms and one cardiac stress room.

Red River Pharmacy (Radiopharmacy): Clinical time at this institution will give the student experience in preparing radiopharmaceutical kits and drawing up patient doses, generator elution and set-up, tagging blood components, radiation safety techniques, record keeping and Nuclear Regulatory Requirements. The supervisor of the radiopharmacy, Michael Brewer (907-8949; 515-0089), is responsible for the training and evaluation of the student during the rotation.

Arkansas Cardiology (Baptist Health Heart Institute): Clinical time at this institution will primarily be centered upon performing various diagnostic cardiovascular imaging procedures. The student clinical supervisor is Josh Ward (227-9035 Ext. 1253), is responsible for the student’s clinical training during the rotation as well as overseeing the evaluation of the student by each clinical instructor. The student will rotate the various imaging rooms in the clinical area on a scheduled basis. Periodically, the student may be rotating with a different technologist in order to give him/her a more varied clinical education.

Little Rock Hematology and Oncology/Ark. Cancer Center (PET/CT) and Diagnostic Imaging: Clinical time in the diagnostic imaging center will expose the student primarily to whole body bone imaging and gated blood pool imaging (MUGA scans). The PET/CT will give the student an intensive clinical experience in patient preparation for both PET imaging and general imaging procedures, in vitro tagging of RBCs, dosing patients, imaging and processing the PET/CT scans and in learning to perform QC procedures on the PET/CT scanner and the scintillation camera. The clinical supervisor for the students is Monica Prince (978-1591) for both the diagnostic imaging and PET/CT.

Arkansas Children’s Hospital: Clinical time at the Children’s Hospital will be focused on working with pediatric patients and the special techniques used when imaging children. The student clinical supervisor is Alan Kinsey (364-1180).

LEVEL OF SUPERVISION DURING CLINICAL ROTATIONS

1. **Direct supervision:** Student supervision by a qualified practitioner who reviews the procedures in relation to the student’s achievement, evaluates the condition of the patient in relation to the student’s knowledge, is present during the procedure, and reviews and approves the procedure.
 a. instruct and demonstrate as the student observes;
 b. provide step by step instruction (if necessary when the student assists or performs);
 c. observe closely, the student’s performance of the exam.

2. **Indirect supervision:** For Nuclear Medicine Technology, that supervision provided by a qualified practitioner immediately available to assist students regardless of the level of student achievement. Immediately available is interpreted as the physical presence of a qualified practitioner adjacent to the room or location where an imaging procedure is being performed. This availability applies to all areas where ionizing radiation is in use, including diagnostic imaging, CT, PET/CT and the Radiopharmacy.

STUDENT EMPLOYMENT/WORK RELATED POLICIES

1. Students may be employed at Baptist Health or at other facilities, provided the “work for pay hours” do not interfere with classroom or clinical assignments.

2. The time spent as an employee at Baptist Health cannot be credited to the clinical educational program of the School. Classroom or clinical assignments will not be altered to accommodate the work schedule.

3. At no time may a student “clock-in” and begin “work for pay hours” prior to 4:00 pm (1600) during weekdays unless it is during a scheduled vacation (e.g. Christmas Break and/or Spring Break).
4. After the student has developed a level of competency in performing the various clinical procedures in the Nuclear Medicine Department, he/she may apply to the Supervisor of Nuclear Medicine to work as a "non-registered technologist" (NRT) if a position is available. Hiring will be contingent upon the agreement between the Program Director and the Supervisor that the student has met the required clinical competencies. The Program Director will not participate in the hiring process of the student for work purposes other than the verification of clinical competency. The extent to which the student is allowed to perform the duties of a NRT is at the discretion of the manager of the Nuclear Medicine department and the guidelines of the Arkansas Department of Radiological Health. However, it is understood that under no circumstances will a student employee be allowed to take call or work as an independent technologist without direct supervision of a licensed Nuclear Medicine Technologist. A student employee as a NRT may not be used to take the place of qualified staff at any time.

5. A student choosing to work must complete the regular hiring process of the Personnel Department of Baptist Health and the Radiology Department (if applying to work there).

6. Although School Student Policies and Baptist Health Employee Policies are in fact separate one from the other, a student’s behavior during a Baptist Health employment period that results in a disciplinary action may in turn result in the same by the school and vice versa. The school is not responsible for any unprofessional conduct by the student while “on the job working for pay.” The employer has the full responsibility for that aspect. However, any unprofessional conduct may be reported to the Program Director for documentation and further evaluation.

7. The student “at work” is required to exemplify the BH Code of Ethical Conduct the same as all other BH employees.

8. The Program Director will not participate in the hiring process of students for work purposes.

9. Students on school directed clinical assignments shall not be directed by another student who is working at the same time. Working employee students shall not delegate work, (tasks) such as “process images”, complete paper work, or “run errands”, and so forth, to other students in the area for school directed clinical assignments.

10. A status “Good Standing” in the school is required in order to qualify for employment for BAPTIST HEALTH. “Good Standing” is defined as:

 10.1 having the required attendance record,
 10.2 satisfactory attendance record, and
 10.3 record void of disciplinary action.

11. Students shall not wear the school uniform when working as an employee. This includes Baptist Health, as well as other places of employment.

12. The health and safety of patients, students and faculty must not be jeopardized in any way by the activity of a student, even if the student is acting in the role of an employee in the facility.

SPECIAL REQUIREMENTS

Students enrolled at an affiliate university are encouraged to consult with the Nuclear Medicine Advisor at that university to assure completion of all general education and specific program prerequisites. All applicants are encouraged to contact the Program Director of the School of Nuclear Medicine Technology during their sophomore year in college for additional information. It is the responsibility of the student enrolled in the University of Central...
Arkansas to meet with the Affiliated Programs advisor in May prior to commencement in order to complete all necessary paperwork for their graduation from the University.

STANDARDS OF CONDUCT

1. Students must be in the correct uniform at the beginning of their rotation. Any student that does not have on the correct uniform, including clean shoes (solid white, black or grey) and lab coat, will be sent home to change. The tardy/absence policy will apply to the time that the student is not in the clinical area.

2. Eating, drinking, chewing gum, or smoking is not allowed in any of the clinical settings in which students will be rotating due to hospital policy, State Health and Nuclear Regulatory Commission requirements. Students and technologists are not allowed to have any food, gum, smoking materials, etc. in their pockets in any controlled area.

3. **Cell phones are not allowed to be turned on or used in either the classroom or the clinical rotations (this includes texting).** Cell phones must remain turned off and placed in the student’s backpack or left in their vehicle. Any student caught utilizing a cell phone in a patient care area or clinical rotation area is subject to immediate dismissal from the program. Because cells phones have been linked to student cheating on examinations, any student having a cell phone in the immediate vicinity during a test will be subject to immediate disciplinary action. Any student caught taking a photograph of a patient, patient image or record will be subject to immediate dismissal from the program. Emergency calls should be received by the front desk at the School (501-202-6200).

4. The clinical instructor (Nuclear Medicine Technologist/Radiopharmacist/CT Technologist) is responsible for the clinical education and conduct of his or her assigned student(s). Directions from the clinical instructor must be followed in order to maintain safe and continuity of patient care: not to do so, shall result in immediate disciplinary action by the school.

5. Students are not to leave their assigned clinical department or area before letting the technologist that is responsible for the area know where they are going.

6. Students are to remain in the clinical imaging room at all times when a patient is present. **Under no circumstances is a patient ever to be left in a room alone without supervision.** Patients should always be assisted when they are to be moved from a wheelchair to a stretcher or from a stretcher/bed to a stretcher/bed and the wheels of both chairs and stretchers should always be locked to assure safety. Sliding boards are always to be used when transferring patients from a stretcher/bed to the imaging table and back.

7. Students are expected to report immediately any accident, incident or error to the assigned clinical instructor of the area, regardless of how minor it might seem to be.

8. Dosimetry badges should be worn correctly at the lab coat collar and ring badges should be worn on the hand that you draw up radioactive doses with and inject with. The ring badge TLD crystal should be turned inwards towards the palm in order to give the most accurate dose reading when injecting. **These monitoring devices must be worn at all times when on duty in the clinical areas. Students showing up to clinical without their badges will be required to leave the area and go get them.** The missed time will have to be rescheduled and made up. This requirement falls under Arkansas State Health Department (ASHD) regulations and cannot be compromised.

Monitoring badges and ring dosimeters will be turned in and new ones distributed in class on the first class day of each month. Should one of these devices be lost, notify the Program Director and/or Radiation Safety Officer at BHMC-LR immediately. There is a small charge for the loss of the ring badge and/or film badge holder. Disciplinary action may be taken if more than one month’s dosimetry readings have been lost due to carelessness.
9. Whenever working with radioactive materials in syringes, a syringe shield must be used. This includes radiopharmaceutical preparation, drawing up doses, and injecting patients. Under no circumstances is a student to perform any of these tasks without using the proper syringe shield.

10. Disposable plastic gloves must be worn whenever handling radioactive materials, radioactive and/or non-radioactive body fluids or performing intravenous injections. Be aware of special patient precautions, which may require the wearing of gloves, gowns and/or masks during the entire time you are in contact with the patient. Any student observed not wearing gloves when handling radioactive materials, performing venipuncture, or otherwise potentially coming into contact with a patient’s bodily fluids is subject to immediate disciplinary action.

11. Personal phone calls should not be made except when on break or lunch. Incoming calls will not be accepted unless they are of an emergency nature. All callers will be asked to leave a message. Personal mail should not be received at the department.

12. Report any accident or incident immediately, no matter how minor it may seem. If you are accidentally stuck with a needle or if a patient is accidentally scratched or bumped, it is essential that an Incident and Accident (I&A) form be filled out and the Program Director and the Clinical Supervisor be notified. This is important in cases of liability, especially when the incident may concern harm to the patient.

13. If you are not busy in your assigned room, you are encouraged to observe in another room or assist with another patient. If a computer terminal or another piece of equipment is available, you are also encouraged to spend time becoming more familiar with the operation of that equipment. Ask the clinical supervisor or technologist for assistance when you are in need of assistance with the equipment.

14. Each student is responsible for assuring that an evaluation form has been filled out on his/her clinical rotation by their supervising technologist.

15. E-readers, electronic notebooks, novels, magazines and other literature not pertaining to Nuclear Medicine are not allowed in the clinical areas. It is not acceptable to read or study while performing a clinical procedure on a patient. Any free time should be spent studying the Clinical Procedure Manual, imaging equipment manuals, reading Nuclear Medicine literature or working on one of the imaging processing computers.

16. When a student is concluded with the day’s learning activities (clinical or classroom) and is away from the campus, they are expected to reflect in both appearance and attitude the Baptist Health values. As long as a student is in the BHCLR uniform and/or is wearing their identification badge so that they can be identified as a BHCLR student, their behavior and dress should be the same as if they were on the campus. It is never acceptable for a student to wear their scrubs and ID badge which identifies them as a student at BHCLR and indulge in behaviors that are not in keeping with the Baptist Health values.

17. Students are encouraged, but are not required to attend the Southwestern Chapter Society of Nuclear Medicine meeting held in March or April each year. Since attendance at this meeting can be expensive, it is optional for the student to attend, although the benefits of attending the Registry Review session and the Continuing Education sessions are valuable. Students not attending will be expected to remain in their rotations in their assigned clinical areas. More information may be obtained at the official website of the Southwestern Chapter Society of Nuclear Medicine: http://www.swcsnm.org/meetings/meetings.htm

CLINICAL INSTRUCTOR RESPONSIBILITIES

The staff Nuclear Medicine Technologists and Radiopharmacists at the different clinical rotation sites are the clinical supervisors or clinical instructors for the BAPTIST HEALTH School of Nuclear Medicine Technology.
When a Nuclear Medicine Technologist is employed at Baptist Health, it is understood that part of their job description is to teach student Nuclear Medicine Technologists. These responsibilities are specifically described in their job description and are used when the instructor is evaluated on the BHMC standards of performance system.

Expectations of the student by the clinical staff includes the following:

1. The student is to learn the operation of each piece of equipment within the department, to include the acquisition computer, table and gantry, processing computer and any other equipment that is brought in the area to perform a procedure. The student is to learn and keep in order the necessary supplies kept within this area.

2. The student is to learn the proper positions, proper radiation protection measures, and correct methodology for setting up the equipment and computers for both acquisition and processing.

3. Coordinated with the didactic education, students should be shown how to do each procedure (perhaps several times), then they should be allowed to perform the examination under direct supervision until the student can do the procedure with minimal or no help. When this level of proficiency has been reached, the student should progress to performing the examination under variable supervision with the clinical instructor near by to assist on difficult patients or examinations. At this point, the student should attempt to check off on the procedure using the Clinical Competency Form.

4. The student should learn the necessary explanations for the different examinations and be able to communicate with the patient and provide appropriate patient education. The student should learn to practice good radiation safety techniques and learn how to provide comfort during the examination and provide for the patient’s modesty. The student should learn a professional manner that is necessary to provide not only good public relations but the best of patient care.

5. The student should have or acquire the cooperation and attitude that is necessary to become a good member of the medical team. The student should have or acquire the initiative and responsibility to accomplish the objectives and obtain results in regard to technical knowledge and to see the requirements of the entire department are done. The student should acquire a personal appearance and demeanor that will meet the standards of the School, the Nuclear Medicine Department and the institution.

6. The staff Nuclear Medicine Technologist/Radiopharmacist is responsible for the evaluations and grading of the knowledge acquired and progress made by the student in all the learning aspects of the clinical area. A clinical evaluation is filled out on a rotation basis by the clinical instructor who rotates with the student according to our policies and criteria. At that time the clinical instructor will discuss, evaluate and counsel with the student, then turn the evaluation into the Program Director for review, counseling if needed, and then filing in the student’s folder.

CLINICAL EVALUATIONS

A clinical evaluation is filled out at the end of each rotation (usually two weeks in length) by whichever clinical instructor primarily rotates with the student, according to our policies and criteria. At that time, the clinical instructor will discuss, evaluate and counsel with the student, then turn the evaluation in to the program director of the school for review, counseling if needed, and then filing. The criteria listed below may be used as a guide for evaluation of the cognitive, psychomotor and affective aspects of the program. *(see appendix II)*
EVALUATION OF REQUISITION (COGNITIVE DOMAIN)

The student is able to:

a. Identify procedures to be done
b. Give patients age and name
c. Identify mode of travel
d. Call the patient’s name

ROOM AND EQUIPMENT PREPARATION (PSYCHOMOTOR DOMAIN)

The student is able to (when necessary):

a. Keep table clean and cabinets stocked orderly
b. Have appropriate equipment and materials available for performing the procedure
c. Have emesis basins, bedpans, IV poles ready
d. Know location of crash cart
e. Apply suction and O2
f. Have syringes and needles ready for injection using aseptic technique
g. Have imaging protocols set into the acquisition computer
h. Have detectors and table in position and ready for exam
i. Restock linen when necessary

PATIENT CARE AND PROFESSIONAL RELATIONSHIPS (AFFECTIVE DOMAIN)

The student is able to (when necessary):

a. Correctly identify all patients by verifying name on arm band with name on request
b. Assist safely, the patient to the imaging room and onto the table
c. Explain the examination to the patient
d. Give proper instructions for moving and breathing
e. Talk with the patient in a gentle manner and be aware of their rights
f. Have patient gowned properly
g. Keep patient covered for privacy
h. Practice good medical asepsis
i. Show courtesy to the patient, patient’s family, physicians and technologist
j. Exhibit an ethical and professional demeanor
k. Follow proper procedure for isolation procedures of patients
l. Exhibit Baptist Health Values
m. Complies with the Dress Code policy

EQUIPMENT MANIPULATION AND TECHNICAL FACTORS (PSYCHOMOTOR DOMAIN)

The student is able to:

a. Perform all procedures according to department protocol
b. Complete procedure in a timely manner
c. Remain in assigned area unless given permission to work in another room
d. Accept responsibility for own work
e. Verify the acceptability of all procedures done prior to turning in films to physician
f. Demonstrate ability to select the correct collimator for the procedure
g. Demonstrate ability to enter patient data into acquisition computer for diagnostic exams and to recall data on the processing computer
h. Demonstrate ability to utilize ancillary equipment in the assigned area (e.g. pulse oximeter, ECG monitors, treadmill, etc.)
i. Demonstrate ability to troubleshoot instrumentation problems (e.g. drifting PMT, off-peak image, artifacts, etc.)
j. Demonstrates ability to recognize and correct problems such as image artifacts, instrument malfunction due to improperly set controls, radiopharmaceutical problems and unacceptable quality control on the imaging instrumentation
k. Demonstrate ability to recognize gross abnormalities on films and determine if additional images are needed

POSITIONING SKILLS (PSYCHOMOTOR DOMAIN)

The student is able to:

a. Select proper patient position for study being performed
b. Correctly locate landmarks on image and label correctly
c. Provide patient identification on image
d. Angle the detector or patient correctly, if necessary
e. Position the patient correctly on table (head at the right end, prone, supine, lateral or correct obliquity, if necessary)
f. Remove unnecessary anatomical parts or material from the imaging area

evidence of radiation protection (psychomotor domain) and quality control

The student is able to:

a. Select accurate radiopharmaceutical and dose for procedure
b. Demonstrate correct radiation safety practices of appropriate time, distance and shielding
c. Follows department and NRC policies on utilizing syringe shields and gloves when handling radioactive materials
d. Demonstrate correct methodology for performing routine contamination surveys with a GM meter
e. Demonstrates ability to perform wipe tests
f. Demonstrates ability to decontaminate an area of radioactive contamination
g. Complete pregnancy forms on female patients of childbearing years
h. Demonstrates proper and consistent wearing of radiation dosimeter and TLD ring badge
i. Demonstrate ability to perform Quality Control procedures efficiently and accurately on assigned scintillation camera and/or other imaging/counting equipment

professional personal appearance and attitudes (affective domain)

The student is able to:
a. Support school policies
b. Show interest in the assignment and duties
c. Adapt to the situation cheerfully
d. Cooperate with other students, Technologists, Physicians, and hospital personnel
e. Be responsible for own actions
f. Look for things to do and do them
g. Have an “overall” working knowledge of the function of the entire department
h. Wear a clean and pressed regulation uniform
i. Wear clean and polished regulation shoes, laces and other items
j. Have hair clean and groomed as written in standards
k. Use cosmetics and grooming aids (perfume, cologne, deodorant, after shave, make-up in a professional manner to conform to the standards)
l. Conform to the dress code with regard to jewelry, fingernails and polish, hand lotion, chewing gum and candy

IMAGE AND PROCEDURE ANALYSIS (COGNITIVE DOMAIN)

The student is able to:

a. State the routine protocol for the procedure
b. Determine necessity for any variation in the protocol
c. State the routine patient positions for the procedure
d. Determine any compensation necessary to provide correct image quality
e. Identify anatomical structures on both planar and cross-sectional images
f. State the evaluation criteria necessary for an acceptable image
g. Recognize any visible pathological condition
h. Demonstrate proper identification of film, including view, anatomical orientation and patient data
i. Recognize and demonstrate ability to troubleshoot film problems such as density, image size and artifacts

DOSE CALCULATION AND ADMINISTRATION (COGNITIVE AND PSYCHOMOTOR DOMAIN)

The student is able to:

a. Demonstrate ability to determine correct radiopharmaceutical, activity and route of administration
b. Assay dose in dose calibrator and label dose appropriately
c. Assemble all necessary equipment prior to dosing patient
d. Administer 133Xe gas according to department policy
e. Calibrates uptake probe and counts radiiodine caps prior to dosing patient
f. Utilized proper radiation safety techniques ad sterile techniques when administering dose
g. Demonstrate ability to determine if patient has any contraindications prior to dosing
h. Observe patient for possible adverse reactions

DRESS CODE

The faculty of the School is responsible for enforcing the dress code and will make final interpretations regarding attire.
Student attire at both the classroom setting and in all clinical settings consists of Cherokee® brand pewter-colored scrub pants, scrub top, lab coat (warm-up jacket or solid white lab coat with school patch), solid white socks, solid white, gray or black leather shoes with minimal decorative coloring (no fluorescent colors). Absolutely no sandals or open-toes or open-heel shoes or shoes with holes in the tops (Croc® type) are allowed. The scrub attire should be clean and ironed at all times. Shoes must be clean at all times. A white (no other colors allowed) T-shirt must be worn under the scrub top, and the sleeves and bottom of the T-shirt must not be visible. Lab coat (Cherokee® pewter-colored warm-up jacket or white lab coat) must be worn at all times when working with patients or with radioactive materials. The lab coat and each scrub top must have the School of Nuclear Medicine Technology patch stitched on the upper left sleeve. The school issued dosimeters (OSL dosimeter and ring badge) must be worn correctly at all times when in the clinical areas and/or when working with radioactive materials. The appropriate student ID must also be worn at collar level on the lab coat at all times when at any of the clinical sites or on campus.

All lab coats, scrub jackets and scrub tops must be monogrammed with the student’s name (in dark gray or black on the white lab coat and in white on all pewter-colored scrubs) on the upper left side with “Nuclear Medicine” under the name.

The School endorses the intent of the Dress Code Policy of Baptist Health in that all clothing and uniforms should present a positive personal and professional appearance to patients, visitors and employees. Therefore, the dress policy for both employees and students enrolled in the School conform to that of Baptist Health. Additionally, dress for students in the clinical areas also conforms to that set forth in the dress code policy for that particular clinical area.

Refer to Student Handbook General Section for additional information regarding the Dress Code.

The faculty of the School is responsible for interpreting and enforcing the Dress Code and making a final judgment regarding attire.

(1) Students report for duty at their assigned times and in the proper attire for that area according to Dress Code.

(2) Uniforms are to be neat, clean, ironed and in good repair at all times. Shoes and shoelaces should be cleaned, polished and in good repair at all times. Sandals and clogs (Crock's® with holes in them are not allowed in the clinical areas due to OSHA infection regulations.

(3) At no time are shorts, split skirts, T-shirts, jump suits, exercise clothes or nylon/silk jogging suits to be worn. Students must look professional at all times, including coming to and going home from the clinical or classroom area. Foot apparel other than solid white, gray or black athletic or nursing shoes are not acceptable. Denim fabric of any color or fabric of a denim-like appearance, such as chambray, is not allowed at either the Baptist Health Medical Center-Little Rock or North Little Rock facilities.

(5) Lab coats/scrub jackets are worn at all times when working with patients or with radioactive materials. Film badge and ring badge must be worn correctly at all times when working with radioactive materials.

(6) **HAIR:**

FEMALE

Hair should be neat, clean and well groomed at all times. Long hair must be pulled back when in the clinical area during rotations. Only naturally occurring hair colors are allowed. Only conservative hair style and hair ornaments should be worn.
MALE

Hair is neat, clean and well groomed at all times. Only naturally occurring hair colors are allowed. Only conservative hair styles should be worn. Hair must be above the top of the collar and not allowed to fall into the eyes. Males should be clean-shaven each morning. Mustaches and beards are allowed, but must be conservative and kept neat and trimmed.

(7) Student I.D. badges are worn at all times on the upper body whenever on Baptist Health property or during a clinical rotation at another facility. No other pins are worn except professionally related ones. Stickers and other adornments are not worn or placed on the name badge.

Students must have name badge on to receive discounts in the Baptist Health Cafeterias and Medical Towers drugstore.

Students are permitted to wear watches and a small ring on each hand (such as a wedding ring). Jewelry should be small enough and of an appearance not to interfere with the equipment or job duties. Necklaces should be worn inside the uniform. For women, no more than two small pierced earrings per ear (no long or dangling earrings) and no other pierced jewelry on any other visible body part is allowed. Men are not permitted to wear earrings and no other pierced jewelry on any other visible body part is allowed. Tattoos must not be visible in a prominent location.

(8) Nails are to be clean and short in length so as not to interfere with work. No nail art or colors. Cologne/perfume, aftershave, or lotions may be worn in strict moderation and must not be strong and/or offensive. The exception to this is when the student is assigned to LR Hematology/Oncology. Since most of the patients at this facility are dealing with cancer and many are on chemotherapy, odors from scented body products can be very nauseating and are therefore discouraged.

(9) Tattoos must be covered with clothing or other means whenever the student is at a clinical site or on campus.

(10) The student is to always be aware that when they are in the school uniform, they are identified as being a member of the Baptist Health team even if they are off campus. As such, their behavior should exemplify the Baptist Health Values at all times, especially when wearing uniforms and badges that identifies them as being a part of Baptist Health. Therefore, it is recommended that students change out of their uniforms after their clinical rotations and/or classroom rotations if they are going to be off campus and in the community. Examples would be going out to eat in the evenings, shopping and socializing.

Responsibilities of the School:

(1) Provide academic instruction in the principles and practices of Nuclear Medicine Technology.

(2) Provide facilities and time for the student to learn and practice the clinical procedures used in Nuclear Medicine, including radiopharmaceutical preparation.

(3) Provide the student the educational experience of practicing in different clinical settings in order to provide a well-rounded educational and practical experience.

(4) Stimulate curiosity and interest in the field of Nuclear Medicine Technology.
(5) Acquaint the student with literature in Nuclear Medicine and the different opportunities for required continuing education and professional development once training is completed.

(6) Assist in developing pride and achievement in his/her chosen profession.

(7) Encourage continued membership and active participation in the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

WHAT THE SCHOOL EXPECTS FROM STUDENTS

During the next twelve (12) months the school expects the student to demonstrate:

(1) **ATTENTION:** Instructors are professional Nuclear Medicine Technologists with employment duties to perform which, under certain circumstances, take priority over teaching responsibilities. Listen carefully and ask questions at appropriate times.

(2) **AWARENESS OF THE PATIENT:** The care and interests of the patient take precedence over everything else. Speed, efficiency, attention to detail and the Code of Ethical Behavior are essential to proper patient care.

(3) **RESPONSIBILITY:** Take responsibility for own work. Attempt to work on your own; however, ask if not sure of something.

(4) **TEAMWORK:** The student is a member of the Nuclear Medicine/Radiology team. Every task they perform, regardless of how trivial it may seem now, has a direct bearing on the quality and quantity of work produced in the Nuclear Medicine Department. Voluntarily giving assistance to the technologists is encouraged when possible.

(5) **DESIRE TO LEARN:** Instructors are ready to assist the student with their clinical education in every way possible. It is up to the student to demonstrate the desire, drive and willingness to learn, progress, achieve, and succeed.

(6) **MATURITY:** The student has embarked on a career that involves personal commitment to the patient, physician and Nuclear Medicine Department. This year will be a very short time, not only to learn, but also to develop core skills as a Nuclear Medicine Technologist.

(7) **ACCOUNTABILITY:** To comply with established policies and guidelines; to meet academic and clinical requirements; and to fulfill all School requirements for graduation.

(8) **PROGRESSION:** Exemplify personal and professional growth as well as academic and clinical achievement and growth.

(9) **EXEMPLIFY:** Baptist Health Values as written in the *Code of Ethical Conduct (page 5 of the Student Handbook Part I)*

RADIATION PROTECTION

All students in the BSCLR School of Nuclear Medicine Technology are required to comply with RH-122 as found in the “Rules and Regulations for Control of Sources of Ionizing Radiation” as published by the Arkansas State Board of Radiological Health.

Occupational Dose Limits for Adults
The licensee shall control the occupational dose to individual adults, except for planned special exposures under RH-1205 to the following dose limits:

1. An annual limit, which is the more limiting of:
 a. The total effective dose equivalent being equal to 5 rems (50 mSv), or
 b. The sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue other than the lens of the eye being equal to 50 rems (500 mSv)

2. The annual limits to the lens of the eye, to the skin and to the extremities which are:
 a. An eye dose equivalent of 15 rems (150 mSv)
 b. A shallow-dose equivalent of 50 rems (500 mSv) to the skin or to each of the extremities

Compilation of the above regulations allows the use of the following maximum prospective dose equivalent:

<table>
<thead>
<tr>
<th>AGE</th>
<th>MONTH</th>
<th>CALENDAR QUARTER</th>
<th>YEARLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 years/older</td>
<td>0.416 rems</td>
<td>1.250 rems</td>
<td>5.0 rems</td>
</tr>
</tbody>
</table>

To be in compliance with the above stated regulations, radiation protection used within the institution should present high assurance that minimum dosages are maintained to the best of our ability. It is felt that the protection measures listed below if practiced are very adequate, yet it is acknowledged that there might be reasonable exceptions to be handled individually.

Students are made aware of dosimetry readings within thirty (30) days of receipt by initialing the report. To promote the ALARA policy of less than the maximum dosage: monthly evaluations shall be done with reference to dosage and rotations. Students are notified in writing by the Radiation Safety Officer when they receive a reading of ≥50 mrem (threshold dose).

BHCLR School of Nuclear Medicine Technology has 3 ALARA levels. Level 1 is greater than 50 mrem per month and less than 100 mrem an e-mail is sent to the participant for notification purposes. Level 2 is between 100 and 210 mrem in one month results in counseling of the participant. Level 3 is greater than 210 in one month and results in an evaluation of work procedures and documentation.

Anyone exceeding the annual dose limit, a report must be made to the Arkansas Department of Health (ADH).

Copies of the monthly dosimetry reports are permanently maintained by the RSO and Program Director. All written counseling's are maintained in the student’s file and by the RSO.

PREGNANCY

1. The purpose of the “Pregnancy Policy” is to clearly communicate the position of the BHCLR School of Nuclear Medicine Technology in relation to pregnancy concerns and student clinical rotations. The School allows for voluntary disclosure of pregnancy status. The student is advised that the policy allows a female student the option of whether or not to inform the Program Director of her pregnancy. If she chooses to voluntarily inform the Program Director, it must be in writing. In the absence of this voluntary, written disclosure, a student cannot be considered pregnant.

2. It is not possible to predict, with any accuracy, the result that a dose of radiation might have on the human embryo or fetus at any stage of development, therefore, it is important that the student practice good radiation safety techniques at all times during their clinical rotations.
3. Students enrolled in the School are instructed in proper safety precautions and personnel monitoring prior to being admitted to any ionizing radiation areas. The student is required to abide by all safety precautions and to remember the importance of keeping exposure as low as achievable through a combination of time, distance and shielding. Due to the number and variety of courses in the curriculum, and the importance of maintaining a rotation schedule through the various assignments, students are strongly encouraged not to become pregnant during the twelve-month period of education.

4. The School encourages voluntary disclosure. Should any student suspect pregnancy, she should consider making a declaration of pregnancy to the Program Director. The declaration must be in writing, dated and include the estimated date of conception. The estimated date of conception is necessary to approximate the dose that the embryo/fetus may have received prior to the declaration. In order for the facility to ensure that the dose to the embryo/fetus does not exceed 5 mSv (0.5 rem) during the entire pregnancy as a result of occupational exposure, the declared pregnant student should not average more than 0.5 mSv (0.05 rem) per month (NCRP #116). If the radiation exposure exceeds this amount, then the student might not be able to meet the necessary clinical rotations during the twelve-month program. The declared, pregnant student will be issued a second (“fetal”) dosimeter to be worn at the waist level.

5. If a student declares that she is pregnant, one of the following options must be chosen and taken:

6.1 Submit a statement from her physician verifying pregnancy and expected due date. The student will then decide either to:

6.11 take an immediate Medical Leave of Absence (MLOA), or

6.12 continue through the planned clinical rotations with full knowledge of the information presented below

6.2 No exceptions in scheduling clinical rotations shall be made due to pregnancy, with the exception of the radiiodine therapy room at the Radiopharmacy.

6.3 If the student elects to take a leave of absence, no further action is needed except a written statement of request from the student

6.4 If the student elects to continue through the clinical rotations, the following are required:

6.41 Counsel with the Program Director and/or Radiation Safety Officer at BHMC-LR regarding the nature of potential radiation injury associated with in-utero exposure and the required preventive measures to be taken throughout the gestation period. Counseling is documented and placed in the Student’s Record. An additional dosimeter will be issued to the student to wear at the waist in order to monitor the dose to the fetus each month.

6.42 A written statement granting permission to continue the clinical rotation by the student’s physician may be required. The statement is filed as content in the Student’s Record.

6. If the student elects to take a leave of absence, it shall be understood that upon return, all missed classes, clinical competencies and rotations shall be completed and Graduation Criteria met prior to graduation. No diploma shall be issued until all requirements of graduation have been successfully fulfilled. This may necessitate repeating the entire year of study.
PROGRAM EFFECTIVENESS

It is essential that the School maintain an ongoing program effectiveness evaluation process for the purpose of monitoring student learning and program effectiveness. Several factors comprise the process, primary being Student and Graduate outcomes assessments; faculty teaching effectiveness; curriculum evaluations; school policies; employer satisfaction with graduates and approval and accrediting outcomes. Thus, students and graduates have an important role in the measurement of program effectiveness.

Students evaluate each course instructor, the Program Director, school facility, clinical faculty and course content as they progress through the program. The evaluations are carried out according to BHCLR policy and established processes.

The student is assured of anonymity, thus encouraging his/her participation in the evaluations. If a student is of the opinion that the process should be improved, the Program Director of the School welcomes suggestions for improvement.

The process summarized presents an objective process through which students provide subjective data in the measurement of teaching behaviors and course evaluations. At the end of each semester, evaluation forms and/or computerized evaluation surveys (Survey Monkey®) are provided to the students and are collected and given to the Allied Health secretary for tabulation and then forwarded to the Program Director for review.

COUNSELING/RESOURCES

Guidance and counseling services are available for all BHCLR students through the Chaplin’s office. The College has a full-time Academic and Spiritual Advisor/Counselor, P. Hope Coleman M.Div., who can be reached at 202-7721. Ms. Coleman is able to assist students in understanding and observing program policies and practices and in handling professional career issues and personal problems that may interfere with progress in the program.

Students also have access to the Gilbreath Library and its database. The library is open from 8 a.m. – 5 p.m., Monday through Friday. A computer lab is available to students from 8 a.m. – 5 p.m., Monday through Friday.

STUDENT HEALTH

1. An ill student must notify the Program Director and Clinical Supervisor of the assigned rotation prior to the scheduled clinical time. Sick time is recorded as absent time.

2. Payment of all medical expenses incurred shall be the student’s responsibility. Please refer to Statement of Responsibility in the General Section of the Student Handbook.

3. Baptist Health Clinic, Suite 260 in Doctors Park is available for students. Clinic hours Monday-Friday from 7am-4pm, closed for lunch 11am-noon. No appointment is necessary, patients are seen on first come first seen basis. Students will be charged a fee. Phone number 501-312-8844.

STUDENT INJURY

Should a student injure themselves during a clinical experience, the Program Director or Clinical Supervisor of the assigned rotation must be notified. The student must report all injuries, no matter how minor they may be. Please refer to the General Section of the Student Handbook or www.BHCLR.edu. Student injury forms are kept in each clinical area. Emergency services are available to students through the Emergency Department at BHMC-LR. Payment of all medical expenses incurred shall be the student’s responsibility. The Clinical Supervisor or Program Director will assist the student in filling out an Accident and Injury Report Form.
INCLEMENT WEATHER

Should inclement weather close the schools, students should listen to local television stations for the announcement. Announcements of closings will be posted on KARK Channel 4, KTHV Channel 11, and KATV Channel 7. School closings are also posted on the school website www.BHCLR.edu and sent as a text message to all students.

REQUIRED TEXTBOOKS (2015-2016)

All of the texts listed below are considered required for classes and need to be purchased prior to the first day of class:

Quick Reference Protocol Manual for Nuclear Medicine Technologists
 Farrell, Mantel, Basso
 ISBN#: 097-8093200488

Basic Science of Nuclear Medicine: The Bare Essentials
 Lee, Kai
 ISBN#: 978-0-932004-90-1

Torres’ Patient Care in Imaging Technology 8th ed.
 Torres, Dutton, Linn-Watson
 ISBN#: 978-1-4511-1565-9

Nuclear Medicine and PET/CT: Technology and Techniques 7th ed.
 Christian; Waterstram-Rich

Medical Terminology Systems 7th ed.
 Flylys, Wedding
 ISBN #: 978-0-8036-2954-7

Nuclear Cardiac Imaging: Terminology and Technical Aspects 2nd ed.
 Crawford; Husain
 ISBN #: 0-932004-85-7

Nuclear Medicine Instrumentation 2nd ed.
 Prekeges
 ISBN #: 978-1-4496-4537-3

Practical Mathematics in Nuclear Medicine Technology 2nd ed.
 Wells
 ISBN #: 0-932004-86-4

Radiation Protection in Medical Radiography 7th ed.
 Sherer; Visconti; Ritenour

 Steves
 ISBN #: 978-0-932004-87-1
ADDITIONAL INFORMATION

CLEP—Not available.

Transfer of Courses/Credit—Not available.

Auditing of Courses—Contact Program Director, Sharon Ward at (501) 202-7447
APPENDIX
APPENDIX I

Baptist Health College Little Rock
Allied Health Cost Plan 2015-2016

<table>
<thead>
<tr>
<th>SCHOOLS OF ALLIED HEALTH</th>
<th>Fall 2015 Tuition/Fees</th>
<th>Spring 2016 Tuition/Fees</th>
<th>Estimated Books*</th>
<th>Estimated Misc.*</th>
<th>Professional Fees*</th>
<th>Total Program Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Histotechnology</td>
<td>$4,216.00</td>
<td>$4,236.00</td>
<td>$620.00</td>
<td>$405.00</td>
<td>$175.00</td>
<td>$9,652.00</td>
</tr>
<tr>
<td>School of Histotechnology – Non-Residential (Online) Track</td>
<td>$4,151.00</td>
<td>$4,021.00</td>
<td>$620.00</td>
<td>$205.00</td>
<td>$175.00</td>
<td>$9,172.00</td>
</tr>
<tr>
<td>School of Medical Laboratory Science</td>
<td>$4,216.00</td>
<td>$4,236.00</td>
<td>$1,170.00</td>
<td>$420.00</td>
<td>$210.00</td>
<td>$10,252.00</td>
</tr>
<tr>
<td>School of Nuclear Medicine Technology</td>
<td>$4,216.00</td>
<td>$4,236.00</td>
<td>$780.00</td>
<td>$480.00</td>
<td>$420.00</td>
<td>$10,132.00</td>
</tr>
<tr>
<td>School of Occupational Therapy Assistant First Year**</td>
<td>$4,271.50</td>
<td>$4,496.50</td>
<td>$1,738.00</td>
<td>$440.00</td>
<td>$85.00</td>
<td>$20,011.00</td>
</tr>
<tr>
<td>School of Occupational Therapy Assistant Second Year**</td>
<td>$4,016.50</td>
<td>$3,966.50</td>
<td>$262.00</td>
<td>$10.00</td>
<td>$725.00</td>
<td>$20,011.00</td>
</tr>
<tr>
<td>School of Radiography First Year</td>
<td>$4,216.00</td>
<td>$4,086.00</td>
<td>$1,025.00</td>
<td>$480.00</td>
<td>N/A</td>
<td>$18,519.00</td>
</tr>
<tr>
<td>School of Radiography Second Year</td>
<td>$4,086.00</td>
<td>$4,236.00</td>
<td>N/A</td>
<td>N/A</td>
<td>$410.00</td>
<td>$18,519.00</td>
</tr>
<tr>
<td>School of Sleep Technology</td>
<td>$4,216.00</td>
<td>$4,236.00</td>
<td>$1,250.00</td>
<td>$405.00</td>
<td>$450.00</td>
<td>$10,587.00</td>
</tr>
<tr>
<td>School of Surgical Technology</td>
<td>$4,366.00</td>
<td>$4,473.00</td>
<td>$775.00</td>
<td>$465.00</td>
<td>$-</td>
<td>$9,679.00</td>
</tr>
</tbody>
</table>

All Tuition and Fees are subject to change.

*These expenses are estimated and may be paid to outside vendors. Book costs are estimated based on new textbook costs.

**OTA A School is affiliated with Polaski Technical College.

Fee includes items such as Registration, Criminal Background Check, Activity, Parking, Technology, Student Health and Special Events.

Miscellaneous may include items such as Uniforms, shoes, equipment, immunizations, etc. These expenses are paid to outside vendors at the student's choice.

Refund Schedule:

With the exception of the $100 registration fee, all tuition and fees payable to BHCLR will be eligible for refund according to the below schedule. The schedule is based on the official date of withdrawal (voluntary or administrative). Please see handbook for entire description of the refund policy.

Refund Methodology for Allied Health Students:

- If the official date of withdrawal falls:
 - Between 0 and 25% of the semester duration, refund is based on a pro rata basis
 - Between 25 and 50% of the semester duration.......50%
 - Between 50 and 75% of the semester duration.......25%
 - Between 75 and 100% of the semester duration.....0%
Student:_________________________________ Clinical Rotation:____________________________________

Begin Date:______________________________ End Date:___

Evaluation:______________________________

Directions to Evaluator:

Be honest and objective in judging the qualities and performance of the student.

Base your judgment on the entire period covered and not upon isolated incidents; however record them if you feel they are pertinent to your analysis.

Your ratings are a measure of your judgment.

You are their instructor for this student’s clinical work.

Counsel with the student prior to turning in your evaluation to the Program Director.

Select the number that best reflects the student’s performance ability from the rating scale for each behavioral objective and record your rating in the Likert Scale box below. **You should take into account the amount of clinical exposure the student has had since a 2nd semester student should perform at a higher level than a 1st semester student.**

Record the Likert Scale score on this sheet.

Circle those areas where the student is having difficulty.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Score (Likert Scale 1 – 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Quality and Organization of Work</td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Image Quality</td>
<td></td>
</tr>
<tr>
<td>Radiation Safety and Quality Control</td>
<td></td>
</tr>
<tr>
<td>Dose Calculation and Administration</td>
<td></td>
</tr>
<tr>
<td>Theoretical Application of Basic Knowledge</td>
<td></td>
</tr>
<tr>
<td>Patient Care and Visitor Concern</td>
<td></td>
</tr>
<tr>
<td>Cooperation</td>
<td></td>
</tr>
<tr>
<td>Attitude /Initiative</td>
<td></td>
</tr>
<tr>
<td>Administrative Functions</td>
<td></td>
</tr>
</tbody>
</table>

Total Scaled Score ________________

Grade % ________________
The Clinical Practicum rotation is the period during which the student develops skills and techniques that are crucial to the profession of Nuclear Medicine Technology. Students will also apply the theoretical knowledge acquired in the classroom to the real world of patient testing and evaluating.

Clinical evaluation of the student’s performance is framed within School Values and those of Baptist Health: Service, Honesty, Respect, Stewardship, and Performance.

The clinical performance is evaluated by the clinical laboratory staff and the clinical section education coordinator who have observed the student’s progress during a specific rotation. The performance is evaluated in regards to technical and professional standards that exemplify the Baptist Health Values. Evaluation format includes:

<table>
<thead>
<tr>
<th>Standard of Performance</th>
<th>Corresponding Baptist Health Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Work Quality</td>
<td>Performance/Service/Stewardship</td>
</tr>
<tr>
<td>2. Organization of Work</td>
<td>Stewardship/Honesty</td>
</tr>
<tr>
<td>3. Safety/Quality Control</td>
<td>Performance/Stewardship</td>
</tr>
<tr>
<td>4. Work Area</td>
<td>Performance/Stewardship</td>
</tr>
<tr>
<td>5. Basic Knowledge</td>
<td>Honesty/Service</td>
</tr>
<tr>
<td>6. Abnormality Knowledge</td>
<td>Performance/Service/Honesty</td>
</tr>
<tr>
<td>7. Cooperation</td>
<td>Service/Respect</td>
</tr>
<tr>
<td>8. Attitude</td>
<td>Respect/Service</td>
</tr>
<tr>
<td>9. Initiative</td>
<td>Performance/Service</td>
</tr>
<tr>
<td>10. Patient/Visitor Concern</td>
<td>Service/Honesty</td>
</tr>
<tr>
<td>11. Supervision Required</td>
<td>Performance/Respect</td>
</tr>
</tbody>
</table>

RATING SCALE: The student is scored on a Likert Scale of 1 through 10, one being the lowest and ten the highest.

GRADING SCALE: The student is graded on the following scale to indicate clinical progress.

- 94% - 100% A
- 86% - 93% B
- 77% - 85% C
- 70% - 76% D
- 69% and below F

POLICIES:

1. The Clinical Practicum policies, grading scale, evaluation tool, and the behavior objectives are shared with students during their orientation to the Clinical Practicum.

2. The student is expected to show progress during the evaluation period as indicated by a minimum score of 77% or higher. Failure to progress in a rotation as evidence by an evaluation below the 77% level will result in a conference between the student and the Program Director with potential progression to a Written Warning and/or dismissal from the program.

3. A Written Warning is considered with weight when reviewing a student’s qualifications for candidacy to graduate.

4. In order to qualify as a candidate for graduation a grand minimum total point score of 77% or higher must be achieved in each rotation of the Clinical Practicum.
1. TECHNICAL EVALUATION

1.1 WORK QUALITY AND ORGANIZATION OF WORK

A. Performed all procedures according to department protocol
B. Completed procedure in timely manner
C. Remained in assigned area unless given permission to work in another room
D. Accepted responsibility for own work
E. Verified the acceptability of all procedures done prior to turning in films to physician
F. Maintained a neat and clean work area

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___

1.2 INSTRUMENTATION

A. Demonstrated ability to select the correct collimator for the procedure
B. Demonstrated ability to enter patient data into acquisition computer for diagnostic exams and to recall data on the processing computer
C. Selected the correct the photopeak and imaging parameters for procedures done in assigned area
D. Demonstrated ability to utilize ancillary equipment in the assigned area (e.g. pulse oximeter, ECG monitors, treadmill, etc.)
E. Demonstrated ability to troubleshoot instrumentation problems (e.g. drifting PMT, off-peak image, artifacts, etc.)

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___

1.3 IMAGE QUALITY

B. Demonstrates proper identification of images, including view, anatomical orientation and patient data
C. Recognizes and demonstrates ability to troubleshoot imaging problems such as intensity, windowing, image size, matrix selection and artifacts

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___

54
1.4 RADIATION SAFETY AND QUALITY CONTROL

A. Demonstrates proper and consistent wearing of radiation dosimeter and TLD ring badge
B. Followed department and State Health policies on utilizing syringe shields and gloves when handling radioactive materials
C. Demonstrated correct radiation safety practices of time, distance and shielding
D. Demonstrated correct methodology for performing routine contamination surveys with a GM meter
E. Demonstrated ability to perform wipe tests
F. Demonstrated ability to decontaminate an area of radioactive contamination
G. Demonstrates ability to perform Quality Control procedures efficiently and accurately on assigned scintillation camera and/or other imaging/counting equipment

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___

1.5 DOSE CALCULATION AND ADMINISTRATION

A. Demonstrates ability to determine correct radiopharmaceutical, activity and route of administration
B. Assays dose in dose calibrator and labels dose appropriately
C. Assembled all necessary equipment prior to dosing patient
D. Administers 133Xe gas according to department policy
E. Calibrates uptake probe and counts radiiodine caps prior to dosing patient
F. Demonstrates ability to determine if patient has any contraindications prior to dosing
G. Utilized proper radiation safety techniques and sterile techniques when administering dose
H. Observed patient for possible adverse reaction

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___
2. THEORETICAL APPLICATION OF BASIC KNOWLEDGE

A. Demonstrates ability to recognize and correct problems such as image artifacts, instrument malfunction due to improperly set controls, radiopharmaceutical problems and unacceptable quality control on the imaging instrumentation
B. Demonstrates ability to recognize gross abnormalities on films and determine if additional images are needed
C. Compared abnormal patient images to normal images

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:__

3. PATIENT CARE AND VISITOR CONCERN

A. Identified all patients by verifying name on arm band with name on request
B. Provided for patient’s comfort and modesty before, during and after the procedure
C. Informed patient about the procedure to be performed
D. Maintained IV fluids, oxygen and other life-support equipment
E. Determined patient vital signs when necessary and provided care as needed
F. Followed policy for patient confidentiality
G. Maintained a courteous and professional manner
H. Exhibited the Baptist Health Values
I. Complied with the Dress Code policy

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___

4. PROFESSIONAL DEVELOPMENT

4.1 COOPERATION

A. Cooperated with staff in assigned area and in other areas in the hospital
B. Demonstrated professional attitude towards fellow workers
C. Willingness to accept instructions and suggestions
D. Demonstrated flexibility when asked to perform unassigned tasks

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:___
4.2 ATTITUDE/INITIATIVE

A. Demonstrated a positive attitude toward coworkers, supervisors and the hospital staff
B. Demonstrated an attitude of being a team player
C. Exhibited an attitude of openness
D. Left personal problems at home
E. Demonstrates ability to be a “self-started”
F. Sought out extra learning experiences
G. Demonstrates ability to think through procedures and accomplish desired results, even under adverse circumstances

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:__
__

5. ADMINISTRATIVE FUNCTIONS

A. Demonstrates ability to accurately log data in the appropriate log book/computer database
B. Demonstrates knowledge of scheduling patient studies, therefore ensuring appropriate sequence for multiple procedures
C. Communicated with appropriate health care personnel regarding patient preparation for procedures
D. Demonstrates knowledge of ordering appropriate radiopharmaceuticals for patient studies
E. Inspected inventory of supplies in assigned area to ensure that adequate quantities are available to complete procedures

What percentage of the time did the student perform the above?

<table>
<thead>
<tr>
<th>0% to 20%</th>
<th>30% to 50%</th>
<th>60% to 80%</th>
<th>90% to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:__
__
<table>
<thead>
<tr>
<th>Nuclear Medicine Procedure (number of required procedures appears in parentheses)</th>
<th>Date Completed</th>
<th>Competence Verified By</th>
<th>R or E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abscess and Infection (0/elective)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeletal (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gated Blood Pool Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial Perfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET or PET/CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocrine/Exocrine (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Uptake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Scan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid Metastatic Survey (TBI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathyroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroesophageal Reflux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric Emptying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI Bleeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meckel’s Diverticulum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitourinary (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal: Dynamic Perfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal: Cortical Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Procedure (# of required procedures appears in parentheses)</td>
<td>Date Completed</td>
<td>Competence Verified By</td>
<td>R or E</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Respiratory (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation (gas or aerosol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptide Receptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphoscintigraphy (breast, melanoma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET or PET/CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECT (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic Procedures (1) (all may be simulated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid: Ablation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid: Hyperthyroidism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palliative Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hodgkin's Lymphoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Nervous System (0/elective)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain: Planar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain: Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain: PET/CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisternography: Routine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisternography: CSF Leak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Procedure (# of required procedures appears in parentheses)</td>
<td>Date Completed</td>
<td>Competence Verified By</td>
<td>R or E</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Patient Care Activity (all)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital Signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venipuncture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead placement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognition of common dysrhythmias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Control Procedures (all)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma Camera or SPECT (uniformity, resolution, center of rotation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Calibrator (constancy, linearity)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Counter/Uptake Probe (energy calibration)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey Meter (daily check)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET/CT (daily check)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R or E: Required or Elective

Requirement by ARRT: Candidates must demonstrate competence in 25 different NM procedures. Candidates should demonstrate the following skills when performing the procedures:

- Evaluation of requisition
- Patient instructions, patient preparation and patient care
- Selection, handling and administration of radiopharmaceuticals
- Equipment configuration
- Patient positioning
- Radiation safety
- Image processing and evaluation

All procedures must be performed on patients, with the exception of thyroid therapy which may be simulated.